
3D Object recognition

◆ Background
◆ n-point perspective algorithms
◆ Geometric hashing
◆ View-based recognition

Background

◆ Recognition as pose estimation
◆ Object pose defines it embedding in three

dimensional space
● 3 degrees of positional freedom
● 3 degrees of rotational freedom

◆ Underlying mathematical methods find
applications in other areas of image analysis

● camera calibration
● image registration

Modeling polyhedral objects

◆ How can we represent a polyhedral object so that we
could recognize it from an abritrary image?

● Collection of positions of three dimensional points
corresponding to the vertices of the polyhedra

● Collection of edges that meet at those vertices
● Colors of the planar facets that are bounded by edges
● Shapes and colors of surface markings on the planar facets

Modeling polyhedral objects

◆ Collection of 3-D points
● coordinates of points are expressed in object coordinate

system
● when we see an image of the object this means that there is

an instance of the object in the world
◆ so, we can think of the object model as being

transformed to the world coordinate system
◆ think of the world coordinate system as a coordinate

system used to describe locations of points in a
workspace for a robot

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,1,1)

(1,1,1)

Object and world coordinate systems
◆ What is the object to world coordinate system

transformation?
● it is a rigid body transformation

◆ translation of the object
◆ rotation of the object
◆ it is called a rigid body transformation because

translations and rotations do not change the distances
between points - i.e., the set of points in the object and
world coordinate systems are congruent.

Object and world coordinate systems

◆ Let po = (x,y,z)T be the coordinates of a point in the
object coordinate system

● we first rotate p using rotation matrix R that determine the
orientation of the object in the world coordinate system: pR
= Rpo

● we then translate pR by the translation vector, t, to determine
its position in the world coordinate system: pw = Rpo + t

x

y z

x

y
z

World and camera coordinates
◆ The camera coordinate system is another 3-D

coordinate system in which
● the x-y plane is the image plane,
● the z axis is orthogonal to the image plane, and
● the image plane is distance f from the center of projection,

which is given coordinates (0,0,0)

◆ This is generally NOT the same coordinate system as
the world coordinate system

● we can place our camera anywhere in our workspace
● in particular, it may be at the end of a robot arm that moves

through the workspace

◆ But, we will assume these systems are aligned

Coordinate frames

xw

yw

zw
xc

y
c

zc

xo

yo

zo

xo

y
o

zo Rpo + t

robot carrying camera

Choosing the points
◆ Given a 3-D object, how do we decide which points

from its surface to choose as its model?
● choose points that will give rise to detectable features in

images
● for polyhedra, the images of its vertices will be points in the

images where two or more long lines meet
◆ these can be detected by edge detection methods

● points on the interiors of regions, or along straight lines are
not easily identified in images.

Example images

Choosing the points
◆ Example: why not choose the midpoints of the edges

of a polyhedra as features
● midpoints of projections of line segments are not the

projections of the midpoints of line segments
● if the entire line segment in the image is not identified, then

we introduce error in locating midpoint

Modeling polyhedral objects - collection of
edges

◆ Represent each edge by its end points
● encode which edges meet at vertices

◆ Same rigid body transformation can
be used to model the object to world
coordinate transformation

● line segment transforms to line segment
defined by transformation of its end
points

◆ But image analysis is now much
harder - must find long edges in
image

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,1,1)

(1,1,1)

N- point pose recovery
◆ Given:

● a 3-D model organized as collection of points
● Image of a scene suspected to include an instance of the

object, segmented into feature points

◆ Goal
● Hypothesize the pose of the object in the scene by

matching (collections of) n model points against n feature
points, enabling us to solve for the rigid body
transformation from the object to world coordinate
systems, and

● Verify that hypothesis by projecting the remainder of the
model into the image and matching

◆ look for edges connecting predicted vertex locations
◆ surface markings

4-3-2-?

◆ 4 - point perspective solution
● unique solution for 6 pose parameters
● computational complexity of n4m4

◆ 3 - point perspective solution
● generally two solutions per triangle pair, but

sometimes more
● reduced complexity of n3m3

4-3-2-?
◆ 1 - point perspective!

● Object resting on a known ground place
● Reduces problem to only 3 degrees of freedom

◆ Solved by matching a single oriented edge
point from the image to an oriented model
edge.

● Complexity of O(mn)

Reducing the combinatorics of pose
estimation

◆ Big problem: we are looking for an object in an
image but the image does not contain the object

● then we would only discover this after comparing all n4

quadruples of image features against all m4 quadruples of
object features.

◆ How can we reduce the number of matches?
● consider only quadruples of object features that are

◆ simultaneously visible - extensive preprocessing
◆ diameter 2 subgraphs of the object graph

❖ but in some images no such subgraphs might be
visible

Reducing the cominbatorics of pose
estimation

◆ Reducing the number of matches
● consider only quadruples of image features that

◆ are connected by edges
◆ are “close” to one another

❖ but not too close or the inevitable errors in
estimating the position of an image vertex will lead
to large errors in pose estimation

◆ form diameter 2 subgraphs of the image vertex graph
● more generally, try to group the image features into sets that

are probably from a single object, and then only construct
quadruples from within a single group

3 point true perspective

O

m

C

m 0
1

H1

M
1

M0

γ1

θ
1

M
2

θ
2

α

m
2

i

k

j

γ
2

D
1

D
2

1
nn2

H
2

R

φ

Exact Perspective

Triangle pose estimation algorithms
◆ There are two basic approaches to solving problems like

pose estimation
● Analytical methods based on constructing systems of equations

and explicitly solving for unknown pose parameters
◆ for triangle pose estimation this involves solving a

quadratic equation in one pose angle, and then using the
solutions to the quadratic equation to solve for remaining
pose parameters

◆ problem: errors in estimating location of image features can
lead to either large pose errors or failure to solve the
quadratic equation

● Approximate numerical algorithms
◆ finds solutions when exact methods fail due to image

measurement error
◆ more computation

Numerical method

α β

δ λ

A’ B’

C’

A
B

C
◆ If distance, R, to C is known, then

possible locations of A (and B)
can be computed

● they lie on the intersections of the
line of sight through A’ and the
sphere of radius ||A-C||
centered at C

● Once A and B are located, their
distance can be computed and
compared against the actual distance
||A-B||

Numerical Method

α β

δ λ

A’ B’

C’

A
B

C
◆ Not practical to search on R

since it is unbounded
◆ Instead, search on one angular

pose parameter, α.
● Ra = Rc cos δ ± ||A-C|| sin α
● Rb = Rccos λ ± ||B-C|| sin β
● Rc = ||A-C|| cos α / sin δ

◆ This results in four possible
lengths for side ||A-B||

Geometric hashing
◆ Consider the following simple 2-D recognition

problem.
● We are given a set of object models, Mi

● each model is represented by a set of points in the plane
◆ Mi = {Pi,1, ..., Pi,ni}

● We want to recognize instances of these point patterns in
images from which point features (junctions, etc.) have been
identified

◆ So, our input image, B, is a binary image where the 1’s are
the feature points

◆ We only allow the position of the instances of the Mi in B to
vary - orientation is fixed.

◆ We want our approach to work even if some points from
the model are not detected in B.

Geometric hashing

◆ We have already studied solutions to this problem
● Correlation - match each of the Mi against B, finding

locations at which the correlation is high
● Hough transform - to speed up the basic correlation

algorithm.

◆ Geometric hashing - we trade off preprocessing time
for search time during recognition

● we will search for all possible models simultaneously
● correlation must search for them one at a time

Geometric hashing

◆ Consider two models
● M1 = {(0,0), (10,0), (10,10), (0,10)}
● M2 = {(0,0), (4,4), (4,-4), (-4,-4), (-4,4)}

◆ We will build a table containing, for each model, all
of the relative coordinates of these points given that
one of the model points is chosen as the origin of its
coordinate system

● this point is called a basis, because choosing it completely
determines the coordinates of the remaining points.

● examples for M1

◆ choose (0,0) as basis obtain (10,0), (10,10), (0,10)
◆ choose (10,0) as basis obtain (-10,0), (0,10), -10,10))

Hashing table0 5 10-5-10

0

5

10 M1,1

M1,1

M1,1

M1,2 M1,2

M1,2

M2,1

M2,1

M2,1

M2,1

M2,2

M2,2

M2,2

M2,2

Hash table creation

◆ How many entries do we need to make in the hash
table.

● Mode Mi has ni point
◆ each has to be chosen as the basis point
◆ coordinates of remaining ni -1 points computed with

respect to basis point
◆ entry (Mi, basis) entered into hash table for each of those

coordinates
● And this has to be done for each of the m models.
● So complexity is mn2 to build the table

◆ But the table is built only once, and then used many
times.

Using the table during recognition
◆ Pick a feature point from the image as the basis.

● the algorithm may have to consider all possible points from
the image as the basis

◆ Compute the coordinates of all of the remaining
image feature points with respect to that basis.

◆ Use each of these coordinates as an index into the
hash table

● at that location of the hash table we will find a list of (Mi, pj)
pairs - model basis pairs that result in some point from Mi
getting these coordinates when the j’th point from Mi is
chosen as the basis

● keep track of the “score” for each (Mi, pi) encountered
● models that obtain high scores for some bases are recorded

as possible detections

Some observations
◆ If the image contains n points from some model, Mi,

then we will detect it n times
● each of the n points can serve as a basis
● for each choice, the remaining n-1 points will result in table

indices that contain (Mi, basis)

◆ If the image contains s feature points, then what is
the complexity of the recognition component of the
geometric hashing algorithm?

● for each of the s points we compute the new coordinates of
the remaining s-1 points

● and we keep track of the (model, basis) pairs retrieved from
the table based on those coordinates

● so, the algorithm has complexity O(s2), and is independent
of the number of models in the database

On to 3-D
◆ Consider the case where the point patterns can

undergo not only translation, but also rotation
● now one point is not a sufficient basis to compute the

coordinates of the remaining points
● but two points are sufficient

1

2
3

4

5

x

y
1

2

3

4
5

x

y

Revised geometric hashing

◆ Table constuction
● need to consider all pairs of points from each model

◆ for each pair, construct the coordinates of the remaining
n-2 points using those two as a basis

◆ add an entry for (model, basis-pair) in the hash table
◆ complexity is now mn3

◆ Recognition
● pick a pair of points from the image (cycling through all

pairs)
● compute coordinates of remaining point using this pair as a

basis
● look up (model, basis-pair) in table and tally votes

Affine combinations of points

◆ Let P1 and P2 be points
◆ Consider the expression P = P1 + t(P2 - P1)

● P represents a point on the line joining P1 and P2.
● if 0 <= t <= 1 then P lies between P1 and P2.
● We can rewrite the expression as P = (1-t)P1 + tP2

◆ Define an affine combination of two points to be
● a1P1 + a2P2

● where a1 + a2 = 1
● P = (1-t)P1 + tP2 is an affine combination with a2 = t.

P1

P2
t(P2-P1)

P1 + t(P2-P1) Affine combinations
◆ Generally,

● if P1, ...Pn is a set of points, and a1 + •••an = 1, then
● a1 P1 + ••• an Pn is the point P1 + a2(P2-P1) + ••• an(Pn-P1)

◆ Let’s look at affine combinations of three points.
These are points

● P = a1P1 + a2P2 + a3P3 = P 1 + a2(P2-P1) + a3(P3-P1)
● where a1 + a2 + a3 = 1
● if 0 <= a1, a2, a3, <=1 then P falls in the triangle, otherwise

outside
● (a2, a3) are the affine coordinates of P

◆ “homogeneous” representation is (1,a2,a3)
● P1, P2,, P3 is called the affine basis

P1 P3

P2

P

Affine combinations

◆ Given any two points, P = (a1, a2) and Q = (a’1, a’2)
● Q-P is a vector
● its affine coordinates are (a’1-a1, a’2-a2)
● Note that the affine coordinates of a point sum to 1, while

the affine coordinates of a vector sum to 0.

Affine transformations

◆ Rigid transformations are of the form

where a2 + b2 =1
◆ An affine transformation is of the form

for arbitrary a,b,c,d and is determined by the
transformation of three points

[x’,y’] =
a b

−b a

x

y

 +

tx

ty

[x’,y’] =
a b

c d

x

y

 +

tx

ty

Representation in homogeneous
coordinates

◆ In homogeneous coordinates, this transformation is
represented as:

x’,y’,1[]=
a b tx

c d ty

0 0 1

x

y

1

Affine coordinates and affine
transformations

◆ The affine coordinates of a point are unchanged if the
point and the affine basis are subjected to the same
affine transformation

◆ Based on simple properties of affine transformations
◆ Let T be an affine transformation

● T(P1 - P2) = TP1 - TP2

● T(aP) = aTP, for any scalar a.

Proof

◆ Let P1 = (x,y,1) and P2 = (u,v,1)
● Note that P1 - P2 is a vector

◆ TP1 = (ax + by + tx, cx + dy + ty, 1)
◆ TP2 = (au + bv + tx, cu + dv + ty,1)

● TP1 - TP2 = (a(x-u) + b(y-v), c(x-u) + d(y-v), 0)

◆ P1 - P2 = (x-u, y-v,0)
◆ T(P1-P2) = (a(x-u) + b(y-v), c(x-u)+d(y-v), 0)

Geometric hashing
◆ Let P1, P2, P3 be an ordered affine basis triplet in the

plane.
◆ Then the affine coordinates (α,β) of a point P are:

● P = α(P2 - P1) + β (P3 - P1) + P1

◆ Applying any affine transformation T will transform
it to

● TP = α(TP2 - TP1) + β (TP3 - T P1) + TP 1
◆ So, TP has the same coordinates (α,β) in the basis

triplet as it did originally.

What do affine transformations have to do
with 3-D recognition

◆ Suppose our point pattern is a planar pattern - i.e., all
of the points lie on the same plane.

● we construct out hash table using these coordinates,
choosing three at a time as a basis

◆ We position and orient this planar point pattern in
space far from the camera and take its image.

● So, the tz component of the model to world rigid
transformation is large - I.e., the Z coordinates of the 3D
object points are large.

● the transformation of the model to the image is an affine
transformation

● so, the affine coordinates of the points in any given basis are
the same in the original 3-D planar model as they are in the
image.

Why is this true?
◆ If our model, M, is a planar point pattern, then in the

object coordinate system the points are represented
as

● Pi = (Xi, Yi, 0)
● Just create the model in the Z=0 plane

◆ M is then placed into the camera 3-D coordinate
system by some rigid transformation with its rotation
matrix and translation vector.

◆ Let pi = (ui,vi) be the image of the rigidly transformed
Pi. Then

zii

xii
i

tYrXr

tYrXr
fu

++
++

=

3231

1211

zii

yii
i tYrXr

tYrXr
fv

++
++

=

3231

2221

Remember

+

=

+=

z

y

x

o

o

o

www

ow

t

t

t

Z

Y

X

rrr

rrr

rrr

ZYX

TRPP

333231

232221

131211

],,[

xoow tZrYrXrX +++= 0131211

And the image coordinates of (Xw, Yw, Zw) are

zooo

xooo
ww tZrYrXr

tZrYrXr
fZfXu

+++
+++==

333231

131211/

Why is this true?

◆ Placing M “far” from the camera means that in the
denominator of these expressions, tz dominates. So
we rewrite them as:

◆ This is an affine transformation

ui = f
r11xi + r12yi + tx

tz
= [fr11 / tz]xi + [fr12 / tz]yi + t x / tz

vi = f
r 21 xi + r22yi + ty

tz
= [fr 21 / tz]xi + [fr 22 / tz]yi + ty / tz

a b t1

c d t2

Preprocessing

◆ Suppose we have a model containing m
feature points

◆ For each ordered noncollinear triplet of
model points

● compute the affine coordinates of the remaining
m-3 points using that triple as a basis

● each such coordinate is used as an entry into a
hash table where we record the (base
triplet,model) at which this coordinate was
obtained.

◆ Complexity is m4 per model.

p1, p2, p3,m

p1, p2, p3,m

p1, p2, p3,m

p1, p2, p3,m

Recognition

◆ Scene with n interest points
◆ Choose an ordered triplet from the scene

● compute the affine coordinates of remaining n-3 points in
this basis

● for each coordinate, check the hash table and for each entry
found, tally a vote for the (basis triplet, model)

● if the triplet scores high enough, we verify the match

◆ If the image does not contain an instance of any
model, then we will only discover this after looking
at all n3 triples.

View Based Recognition

◆ Recognize a 3-D object by comparing an image to
typical “pictures” of the object

● will need many pictures of each 3-D object that cover
different poses and scales

● each such picture needs to be compared against every image
window to determine if any match sufficiently well

● correlation-like measures are used to compute similarity of a
specific view to an image window

View Based Recognition

◆ Canonical problem: Face recognition
● We are provided with a gallery of frontal images of faces we

want to recognize
◆ images in gallery have been normalized to fixed size
◆ images have been normalized so that the centers of the

left and right eyes are in standard positions
◆ there is no background texture against which the faces

are viewed.
● Now, given an image of an unknown face

◆ normalize it by finding the eyes and scaling/rotating the
unknown image so that they are in standard positions

◆ compare against each face in the gallery

Representing the gallery

◆ Typical gallery contains O(10,000) faces
● this makes image correlation impractical

◆ Find a low dimensional representation for images
● Character recognition - reduced a 50x50 character (2500 bits

of information) to 7-8 features, each of which required ~32
bits of information (10:1 reduction)

● Features were chosen in an ad hoc manner - no way to judge
their quality other than to experiment with classification

◆ Image coding model
● An image representation is good if it can be used to

reconstruct a close approximation to the image it codes
● Given two representations that reconstruct an image with

the same accuracy, the one requiring fewer bits is preferable

Coding-based representations - Fourier
transforms

◆ Fourier’s theorem:
Given any (well-behaved) one dimensional function, f(x), it is

possible to represent the function as a weighted sum of sine and
cosine terms of increasing frequency. The function, F(u), is the
Fourier transform and describes the weights.

F(u) = f (x)e−2πiux

−∞

∞

∫ dx

e−2πiux = cos(2πiux) − i sin(2πiux)

Fourier transforms
◆ Given F(u), it is possible to reconstruct f(x) using the

formula:

◆ Typically, F(u) decreases with u
● small u correspond to sines/cosines with low frequencies -

they grossly encode large “objects” in the signal
● large u correspond to high frequency sines/cosines - they

encode fine detail in the signal

◆ For digital functions, the integrals are replaced with
summations, and only discrete values of u are used

● an approximation to f can be computed by “truncating” the
reconstruction - using only a finite range of u

f (x) = F(u)e2πiux

−∞

∞

∫ du

Fourier transforms

Fourier transforms of 2-D images

◆ Sine and cosine functions are replaced by sinusoidal
gratings. Each grating has

● spatial frequency
● orientation

◆ Image is then represented as a weighted sum of these
“basis” functions

● By truncating the summation, we get an approximation of
the original image

Problems and solutions

◆ The inverse Fourier transform converges slowly to
the original function

● this means we need a lot of coefficients to obtain a good
representation of the image

◆ There is nothing magical about the use of sines and
cosines as a “basis” for image representation

● any orthonormal and “complete” set of functions will do
● natural basis of the m-dimensional images

◆ So, maybe we can find a set of basis functions that are
good for representing a particular class of images

● problem is solved by principal component analysis

Fourier transforms of 2-D images
Principal components analysis

◆ We are given:
● a set of n “objects” (images)
● each is represented, initially, by a set of m features (5122)

pixels
● This data is organized as a (very large!) n x m matrix

◆ Let’s look at a small example

x

y
p1

•points are 2-D points
•we find the axis that most closely passes
through these points
•if the axis passed exactly through these
points, then we would need only one
coordinate to represent each point.

Principal components analysis

◆ PC seeks the axis which the cloud of points are closest
to

● this is mathematically identical to finding the axis on which
the variance of the point projections is greatest (that is, on
which the projections are most spread out).

● for high dimensional objects, like pictures, it is unlikely that
there will be a single axis that passes close to all of the objects.

◆ So, in this case, after we find the best axis (u1), we then
find the next best one (orthogonal to the first - u2), and
then the third best (u3), etc.

◆ Images are then represented by their projections on these
axes: vi = I•ui. This is exactly analogous to the Fourier
transform, with the ui replacing the sinusoids.

Principal components analysis

◆ If we compute m principal axes, then we can
reconstruct any image exactly from its principal
components representation:

◆ This is just another basis for the m-vector that
represents the image

● the original basis is the natural one - (1,0,0,...0), (0,1,0,...) ...
● the principal axes represent just a rotation of the original

high dimensional coordinate system

I = viui
i=1

m
∑

Principal components analysis

◆ However, we don’t need to use all of the principal
axes to obtain good reconstructions of the image.

◆ The mathematical procedure that determines the
principal axes uses an eigenvector analysis, and
associates a “score” with each axis

● these scores correspond to the amount of variation in the
image set that the axis corresponds to and are the
eigenvalues of the procedure

● The scores generally go to zero “quickly”. For a face
database, we can generally reconstruct a 512x512 face using
only 80-100 principal axes with very small error.

Recognition using principal component
analysis

◆ Given your gallery of images
● compute its principal components

◆ this is just a set of other images that are used as a basis
for representing the images in the gallery

● determine a k<<m such that the first k principal components
are a “good” representation for the gallery

◆ can be chosen based on the scores (eigenvalues)
computed by the PCA

● represent each image in the gallery by its projection on these
k principal components

◆ this is just the dot product of the image and the principal
components.

◆ each image now represented by k numbers

Recognition using principal component
analysis

◆ Given an unknown image
● compute its projection onto the principal component basis

◆ this is a set of k numbers representing the unknown
image

● compare this k-tuple against each of the database image k-
tuples

◆ simple L2 norm
◆ sometimes each component is weighted by the

associated eigenvalue

Challenges to appearance-based vision

◆ Variations in lighting
◆ Occlusion

● addressed by the use of robust estimation for computing
projections onto principal axes

◆ Normalization
● for size, position and orientation within the image

◆ Large number of images in gallery for viewpoint
independence

◆ Modeling within-class variations
◆ Rejection criteria

A 2-D object to 1-D image example
◆ How many points do we need to see in

the 1-D image of a 2-D line segment of
known length to recover the position
and orientation of the line segment in
the plane?

● 1 - clearly not enough
● 2 - no

◆ choose a point, pA on ray A
◆ draw the circle of radius r centered at p
◆ if P is not too far away from O, then

this circle will intersect ray B at two
points, pB1 and pB2

◆ ab is the image of both pApB1 and pApB2

A B

r

a b

A 2-D object to 1-D image example

◆ How many points?
● 3

◆ B = A + k1r
◆ C = A + k2r
◆ r is a unit vector of

unknown direction
defining the pose of the
line ABC

◆ since ABC are collinear,
the circles of radii AB and
BC centered at B must be
tangent to the rays aA and
cC

A

B
C

a
b

c

r

Hough transform for object recognition

◆ Hypothesize-and-test approach to recognition
◆ Hypotheses generated by clustering pose

estimates from 3-point perspective solutions
◆ Brute force algorithm:

● set up 6-D pose Hough array
● For all n3m3 pairings of triples of image features to triples

of object features compute possible poses using triangle
pose algorithm and increment counters in Hough array

● Possible correct poses will correspond to “clusters” of
high votes in the 6-D pose Hough array, obtained by
searching through Hough array and finding 6-D
neighborhoods with high total counts

Hough transforms for pose estimation

◆ Key subproblems:
1) Representing the parameter space

◆ impractical to use a 6-D array to represent all possible
poses

2) Employing geometric constraints to filter clusters
◆ in this more complex problem there is no guarantee that

the image triangle/object triangle pairings that vote for a
specific pose will be consistent

Representing the parameter space

◆ Impractical to cluster directly in a six dimensional
clustering array

● too much storage is required, even with variable
resolution techniques

● too much computation associated with clustering
● clusters too spread out due to various sources of error

◆ Proposed solution - represent only a lower
dimensional projection of the 6 dimensional space

A 3-D projection
◆ Two parameters correspond to the line of sight

to the object centroid
● solving triangle pose can be used to compute (xc,yc,zc)

- the location of object centroid in world coordinate
system

● its projection onto the image is then (-fxc/z , -fyc/z),
where f is the focal length of the camera

◆ can regard this as the line of sight to the “center”
of the object

A 3-d projection

◆ Third coordinate is the apparent size of the object in
the image

● if actual size of object is h, then its apparant size is fh/z
● h corresponds to largest distance between 3-D model

vertices

Pruning false triangle matches
using geometric constraints

◆ Store list of matching triangle pairs at each cell of
clustering array

◆ Constraint 1 : eliminate duplicate matches of the same
triangle pair

● occurs because of nonuniqueness of triangle pose

◆ Constraint 2: eliminate pairs in which model triangle
could not be visible

● face normal might point away from image
● both triangles meeting at a concave edge must be visible for the

edge to be visible
● visibility analysis eliminates about 50% of the false triangle

pairs

Uniqueness of image feature to object
vertex mapping

◆ Let T be the set of triangle pairs at a point in the
clustering array

● each model vertex can be matched to only one image feature
● each image feature is the image of a unique model vertex

◆ fij - the frequency of pairing model vertex i to image
feature j.

● correct matches should have large fij because image features
ordinarily belong to many triangles

Pruning triangles using uniqueness

◆ For each image feature i, choose the model vertex with
highest fij

◆ Let P be the set of resulting image feature - model
vertex pairings

● eliminate from T any triangle pair with a pairing inconsistent
with P

● eliminate from T any triangle pair that does not contain at
least one pairing from P

◆ Finally, eliminate from T any pair of triangles pairs
with mutually inconsistent pairings

Experimental results

◆ Example- single polyhedral object with 12 vertices,
noncluttered background

◆ Clusters correspond to maximal 3x3x3
neighborhoods of clustering array

Cluster Triangles Point Pairs

Orig Final Final
60 22 12
50 1 3
44 0 0
38 2 4
36 0 0

Scaled orthographic projection -
definitions and pose estimation

◆ M0, M1, ..., Mi, ...Mn are the object feature points
● M0 is called the reference point
● object frame of reference is M0u, M0v, M0w
● (Ui, Vi, Wi) are the known coordinates of Mi in the object

frame of reference.

◆ In Scaled orthographic projection (SOP) we assume
the range to all object points is Z0, the range to M0.

● SOP coordinates of pi, the SOP image of Mi are
◆ x’i = fXi/Z0

◆ y’i = fYi/Z0

Notation
◆ The perspective image, mi, of this point is

● xi = fXi/Zi

● yi = fYi/Zi

◆ The ratio s = f/Z0 is called the scaling factor of the
SOP

● x’i = fXi/Z0 + f(Xi-X0)/Z0 = x0 + s(Xi-X0)
● y’i = y0 + s(Yi - Y0)

◆ The rotation matrix R for the object is the matrix
whose rows are the coordinates of the unit vectors
i,j,k from the camera coordinate system expressed in
the object coordinate system (M0u, M0v, M0w).

R =
iu iv iw

ju jv jw

ku kv kw

POSE from SOP

O

C

H

Miz

x
i

k

m0

w

u

M0

v

j

K

G

y

mi

Pi
Ni

pi

Z0

f

◆ SOP coordinates of Mi are:

◆ I = si, J = sj, s = f/Z0

◆ I and J can be recovered by solving
system of linear equations from n
point correspondences

◆ Unscaling I and J gives rotation
matrix and distance, Z0, to M0.

xi − x0 = I • M 0Mi = [UiViWi] ×
Iu

Iv

Iw

yi − y0 = J • M 0Mi = [UiViWi] ×
Ju

Jv

Jw

Geometric Hashing
◆ Recognition of flat objects

● depth variation within object small compared to distance of
object from camera and focal length of camera

◆ Perspective is then well approximated by parallel
projection with a scale factor

◆ Two different images of the same flat object are in
affine 2-D correspondence

● there is a nonsingular 2x2 matrix A and a 2-D translation
vector b such that each point x in the first image is
transformed to Ax + b

