

Object and world coordinate systems

- What is the object to world coordinate system transformation?
- it is a rigid body transformation
- translation of the object
- rotation of the object
- it is called a rigid body transformation because translations and rotations do not change the distances between points - i.e., the set of points in the object and world coordinate systems are congruent

Object and world coordinate systems

- Let $\mathrm{p}_{\mathrm{o}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})^{\mathrm{T}}$ be the coordinates of a point in the object coordinate system
- we first rotate p using rotation matrix R that determine the orientation of the object in the world coordinate system: p_{R} $=R p_{\text {o }}$
- we then translate p_{R} by the translation vector, t , to determine its position in the world coordinate system: $\mathrm{p}_{\mathrm{w}}=\mathrm{Rp} \mathrm{p}_{\mathrm{o}}+\mathrm{t}$

World and camera coordinates

- The camera coordinate system is another 3-D coordinate system in which
- the $x-y$ plane is the image plane,
- the z axis is orthogonal to the image plane, and
- the image plane is distance f from the center of projection, which is given coordinates $(0,0,0)$
- This is generally NOT the same coordinate system as the world coordinate system
- we can place our camera anywhere in our workspace
- in particular, it may be at the end of a robot arm that moves through the workspace
- But, we will assume these systems are aligned

-	Given a 3-D object, how do we decide which points from its surface to choose as its model? - choose points that will give rise to detectable features in images - for polyhedra, the images of its vertices will be points in the images where two or more long lines meet - these can be detected by edge detection methods
points on the interiors of regions, or along straight lines are not easily identified in images.	

Choosing the points

- Example: why not choose the midpoints of the edges of a polyhedra as features
- midpoints of projections of line segments are not the projections of the midpoints of line segments
- if the entire line segment in the image is not identified, then we introduce error in locating midpoint

Reducing the combinatorics of pose estimation

- Big problem: we are looking for an object in an image but the image does not contain the object
- then we would only discover this after comparing all n^{4} quadruples of image features against all m^{4} quadruples of object features.
- How can we reduce the number of matches?
- consider only quadruples of object features that are
- simultaneously visible - extensive preprocessing - diameter 2 subgraphs of the object graph
* but in some images no such subgraphs might be visible

Geometric hashing

- Consider the following simple 2-D recognition problem.
- We are given a set of object models, M_{i}
- each model is represented by a set of points in the plane - $\mathrm{M}_{\mathrm{i}}=\left\{\mathrm{P}_{\mathrm{i}, 1}, \ldots, \mathrm{P}_{\mathrm{i}, \mathrm{i}, \mathrm{i}}\right\}$
- We want to recognize instances of these point patterns in images from which point features (junctions, etc.) have been identified
- So, our input image, B , is a binary image where the 1's are the feature points
- We only allow the position of the instances of the M_{i} in B to vary - orientation is fixed.
- We want our approach to work even if some points from the model are not detected in B.

Some observations

- If the image contains n points from some model, M_{i}, then we will detect it n times
- each of the n points can serve as a basis
- for each choice, the remaining n-1 points will result in table indices that contain (M_{i}, basis)
- If the image contains s feature points, then what is the complexity of the recognition component of the geometric hashing algorithm?
- for each of the s points we compute the new coordinates of the remaining s-1 points
- and we keep track of the (model, basis) pairs retrieved from the table based on those coordinates
- so, the algorithm has complexity $\mathrm{O}\left(\mathrm{s}^{2}\right)$, and is independent of the number of models in the database

Affine coordinates and affine transformations

- The affine coordinates of a point are unchanged if the point and the affine basis are subjected to the same affine transformation
- Based on simple properties of affine transformations
- Let T be an affine transformation
- $\mathrm{T}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=\mathrm{TP}_{1}-\mathrm{TP}_{2}$
- $T(a P)=a T P$, for any scalar a.

Geometric hashing

- Let $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$ be an ordered affine basis triplet in the plane.
- Then the affine coordinates (α, β) of a point P are: - $\mathbf{P}=\alpha\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right)+\beta\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right)+\mathbf{P}_{1}$
- Applying any affine transformation T will transform it to
- $\mathrm{TP}=\alpha\left(\mathrm{TP}_{2}-\mathrm{TP}_{1}\right)+\beta\left(\mathrm{TP}_{3}-\mathrm{T} \mathbf{P}_{1}\right)+\mathrm{T} \mathbf{P}_{1}$
- So, TP has the same coordinates (α, β) in the basis triplet as it did originally.

What do affine transformations have to do with 3-D recognition

- Suppose our point pattern is a planar pattern - i.e., all of the points lie on the same plane.
- we construct out hash table using these coordinates, choosing three at a time as a basis
- We position and orient this planar point pattern in space far from the camera and take its image.
- So, the t_{z} component of the model to world rigid transformation is large - I.e., the Z coordinates of the 3D object points are large.
- the transformation of the model to the image is an affine transformation
- so, the affine coordinates of the points in any given basis are the same in the original 3 -D planar model as they are in the image.

Remember
$P_{w}=R P_{o}+T$
$\left[X_{w}, Y_{w}, Z_{w}\right]=\left[\begin{array}{lll}r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33}\end{array}\right]\left[\begin{array}{c}X_{o} \\ Y_{o} \\ Z_{o}\end{array}\right]+\left[\begin{array}{c}t_{x} \\ t_{y} \\ t_{z}\end{array}\right]$
$X_{w}=r_{11} X_{o}+r_{12} Y_{o}+r_{13} Z_{0}+t_{x}$
And the image coordinates of $\left(X_{w}, Y_{w}, Z_{w}\right)$ are
$u=f X_{w} / Z_{w}=f \frac{r_{11} X_{o}+r_{12} Y_{o}+r_{13} Z_{o}+t_{x}}{r_{31} X_{o}+r_{32} Y_{o}+r_{33} Z_{o}+t_{z}}$

Why is this true?

- Placing M "far" from the camera means that in the denominator of these expressions, t_{z} dominates. So we rewrite them as:

$$
\begin{aligned}
& u_{i}=f \frac{r_{11} x_{i}+r_{12} y_{i}+t_{x}}{t_{z}}=\begin{array}{c}
\left.f r_{11} / t_{z}\right] x_{i}+\left[f r_{12} / t_{z}\right] y_{i}+t_{x} / t_{z} \\
\mathrm{a} \\
\mathrm{~b}
\end{array} \mathrm{t}_{1} \\
& v_{i}=f \frac{r_{21} x_{i}+r_{22} y_{i}+t y}{t_{z}}=\left[\begin{array}{c}
\left.f r_{21} / t_{z}\right] x_{i}+\left[f r_{22} / t_{z}\right] y_{i}+t_{y} / t_{z} \\
\mathrm{c}
\end{array} \mathrm{t}_{2}\right.
\end{aligned}
$$

- This is an affine transformation

Recognition

- Scene with n interest points
- Choose an ordered triplet from the scene
- compute the affine coordinates of remaining $\mathrm{n}-3$ points in this basis
- for each coordinate, check the hash table and for each entry found, tally a vote for the (basis triplet, model)
- if the triplet scores high enough, we verify the match
- If the image does not contain an instance of any model, then we will only discover this after looking at all n^{3} triples.

Representing the gallery

- Typical gallery contains $\mathrm{O}(10,000)$ faces
- this makes image correlation impractical
- Find a low dimensional representation for images
- Character recognition - reduced a 50×50 character (2500 bits of information) to $7-8$ features, each of which required ~ 32 bits of information (10:1 reduction)
- Features were chosen in an ad hoc manner - no way to judge their quality other than to experiment with classification
- Image coding model
- An image representation is good if it can be used to reconstruct a close approximation to the image it codes
- Given two representations that reconstruct an image with the same accuracy, the one requiring fewer bits is preferable

	Representing the gallery - Typical gallery contains $O(10,000)$ faces - this makes image correlation impractical - Find a low dimensional representation for images - Character recognition - reduced a 50×50 character (2500 bits of information) to 7-8 features, each of which required ~ 32 bits of information (10:1 reduction) - Features were chosen in an ad hoc manner - no way to judge their quality other than to experiment with classification - Image coding model - An image representation is good if it can be used to reconstruct a close approximation to the image it codes - Given two representations that reconstruct an image with the same accuracy, the one requiring fewer bits is preferable

- Canonical problem: Face recognition
- We are provided with a gallery of frontal images of faces we want to recognize
- images in gallery have been normalized to fixed size
- images have been normalized so that the centers of the left and right eyes are in standard positions
- there is no background texture against which the faces are viewed.
- Now, given an image of an unknown face
- normalize it by finding the eyes and scaling/rotating the unknown image so that they are in standard positions
- compare against each face in the gallery

Coding-based representations - Fourier transforms

- Fourier's theorem:
Given any (well-behaved) one dimensional function, $f(x)$, it is possible to represent the function as a weighted sum of sine and cosine terms of increasing frequency. The function, $\mathrm{F}(\mathrm{u})$, is the Fourier transform and describes the weights.

$$
F(u)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i u x} d x
$$

$$
e^{-2 \pi i u x}=\cos (2 \pi i u x)-i \sin (2 \pi i u x)
$$

Principal components analysis

- We are given:
- a set of n "objects" (images)
- each is represented, initially, by a set of m features (512^{2}) pixels
- This data is organized as a (very large!) $\mathrm{n} \times \mathrm{m}$ matrix
- Let's look at a small example

- points are 2-D points
-we find the axis that most closely passes through these points
-if the axis passed exactly through these points, then we would need only one coordinate to represent each point.

Principal components analysis

- PC seeks the axis which the cloud of points are closest to
- this is mathematically identical to finding the axis on which the variance of the point projections is greatest (that is, on which the projections are most spread out).
- for high dimensional objects, like pictures, it is unlikely that there will be a single axis that passes close to all of the objects.
-So, in this case, after we find the best axis $\left(\mathrm{u}_{1}\right)$, we then find the next best one (orthogonal to the first - u_{2}), and then the third best $\left(u_{3}\right)$, etc
- Images are then represented by their projections on these axes: $v_{i}=I \cdot u_{i}$. This is exactly analogous to the Fourier transform, with the u_{i} replacing the sinusoids.

Principal components analysis
- However, we don't need to use all of the principal
axes to obtain good reconstructions of the image.
The mathematical procedure that determines the
principal axes uses an eigenvector analysis, and
associates a "score" with each axis
- these scores correspond to the amount of variation in the
image set that the axis corresponds to and are the
eigenvalues of the procedure
- The scores generally go to zero "quickly". For a face
database, we can generally reconstruct a 512x512 face using
only 80-100 principal axes with very small error.

Recognition using principal component analysis

- Given an unknown image
- compute its projection onto the principal component basis
- this is a set of k numbers representing the unknown image
- compare this k -tuple against each of the database image k tuples
- simple L ${ }^{2}$ norm
- sometimes each component is weighted by the associated eigenvalue

Challenges to appearance-based vision

- Variations in lighting
- Occlusion
- addressed by the use of robust estimation for computing projections onto principal axes
- Normalization
- for size, position and orientation within the image
- Large number of images in gallery for viewpoint independence
- Modeling within-class variations
- Rejection criteria

Representing the parameter space

- Impractical to cluster directly in a six dimensional clustering array
- too much storage is required, even with variable resolution techniques
- too much computation associated with clustering
- clusters too spread out due to various sources of error
- Proposed solution - represent only a lower dimensional projection of the 6 dimensional space

A 3-D projection

- Two parameters correspond to the line of sight to the object centroid
- solving triangle pose can be used to compute ($\mathrm{X}_{c} \mathrm{y}_{c} \mathrm{z}_{c}$) - the location of object centroid in world coordinate system
- its projection onto the image is then $\left(-\mathrm{fx}_{\mathrm{c}} / \mathrm{z},-\mathrm{fy} / \mathrm{c} / \mathrm{z}\right)$, where f is the focal length of the camera
- can regard this as the line of sight to the "center" of the object

Uniqueness of image feature to object vertex mapping

- Let T be the set of triangle pairs at a point in the clustering array
- each model vertex can be matched to only one image feature
- each image feature is the image of a unique model vertex
- f_{ij} - the frequency of pairing model vertex i to image feature j .
- correct matches should have large f_{ij} because image features ordinarily belong to many triangles

Pruning triangles using uniqueness

- For each image feature i, choose the model vertex with highest f_{ij}
- Let P be the set of resulting image feature - model vertex pairings
- eliminate from T any triangle pair with a pairing inconsistent with P
- eliminate from T any triangle pair that does not contain at least one pairing from P
- Finally, eliminate from T any pair of triangles pairs with mutually inconsistent pairings
\square

Experimental results

- Example- single polyhedral object with 12 vertices, noncluttered background
- Clusters correspond to maximal $3 \times 3 \times 3$ neighborhoods of clustering array
Cluster Triangles Point Pairs
Orig Final Final
$60 \quad 22 \quad 12$ $\begin{array}{lll}44 & 0 & 0 \\ 38 & 2 & 4\end{array}$
$36 \quad 0 \quad 0$

Scaled orthographic projection definitions and pose estimation

- $M_{0}, M_{1}, \ldots, M_{i}, \ldots M_{n}$ are the object feature points - M_{0} is called the reference point
- object frame of reference is $\mathrm{M}_{0} \mathbf{u}, \mathrm{M}_{0} \mathbf{v}, \mathrm{M}_{0} \mathbf{w}$
- $\left(\mathrm{U}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}\right)$ are the known coordinates of M_{i} in the object frame of reference.
- In Scaled orthographic projection (SOP) we assume the range to all object points is Z_{0}, the range to M_{0}.
- SOP coordinates of p_{i}, the SOP image of M_{i} are
- $\mathrm{X}_{\mathrm{i}}^{\prime}=\mathrm{fX}_{\mathrm{i}} / \mathrm{Z}_{\mathrm{o}}$
- $\mathrm{y}_{\mathrm{i}}^{\prime}=\mathrm{fY}_{\mathrm{i}} / \mathrm{Z}_{0}$

