

• we then translate p_R by the translation vector, t, to determine its position in the world coordinate system: $p_w=Rp_o+t$

Coding-based representations - Fourier transforms

• Fourier's theorem:

Given any (well-behaved) one dimensional function, f(x), it is possible to represent the function as a weighted sum of sine and cosine terms of increasing frequency. The function, F(u), is the Fourier transform and describes the weights.

 $F(u)=\int\limits_{-\infty}^{\infty}f(x)e^{-2\pi iux}dx$

 $e^{-2\pi i u x} = \cos(2\pi i u x) - i \sin(2\pi i u x)$

- determine a k<<m such that the first k principal components are a "good" representation for the gallery
 - can be chosen based on the scores (eigenvalues) computed by the PCA
- represent each image in the gallery by its projection on these k principal components
 - this is just the dot product of the image and the principal components.
 each image now represented by k numbers

Recognition using principal component analysis

- Given an unknown image
 - compute its projection onto the principal component basis
 this is a set of k numbers representing the unknown image
 - compare this k-tuple against each of the database image ktuples
 - simple L² norm
 - sometimes each component is weighted by the associated eigenvalue

Challenges to appearance-based vision

- ♦ Variations in lighting
- Occlusion
 - addressed by the use of robust estimation for computing projections onto principal axes
- Normalization
 - for size, position and orientation within the image
- Large number of images in gallery for viewpoint independence
- Modeling within-class variations
- Rejection criteria

Hough transforms for pose estimation

- Key subproblems:
 - 1) Representing the parameter space
 - impractical to use a 6-D array to represent all possible poses
 - 2) Employing geometric constraints to filter clusters
 in this more complex problem there is no guarantee that the image triangle/object triangle pairings that vote for a specific pose will be consistent

- Third coordinate is the apparent size of the object in the image
 - if actual size of object is h, then its apparant size is fh/z
 h corresponds to largest distance between 3-D model
 - h corresponds to largest distance between 3-L vertices

Pruning false triangle matches using geometric constraints

- Store list of matching triangle pairs at each cell of clustering array
- **Constraint 1** : eliminate duplicate matches of the same triangle pair
- occurs because of nonuniqueness of triangle pose
- **Constraint 2**: eliminate pairs in which model triangle could not be visible
 - face normal might point away from image
 - both triangles meeting at a concave edge must be visible for the edge to be visible
 - visibility analysis eliminates about 50% of the false triangle pairs

Pruning triangles using uniqueness

- $\bullet~$ For each image feature i, choose the model vertex with highest \mathbf{f}_{ij}
- Let P be the set of resulting image feature model vertex pairings
 - eliminate from T any triangle pair with a pairing inconsistent with P
 - eliminate from T any triangle pair that does not contain at least one pairing from P
- Finally, eliminate from T any pair of triangles pairs with mutually inconsistent pairings

Geometric Hashing

- Recognition of flat objects
 - depth variation within object small compared to distance of object from camera and focal length of camera
- Perspective is then well approximated by parallel projection with a scale factor
- Two different images of the same flat object are in affine 2-D correspondence
 - there is a nonsingular 2x2 matrix A and a 2-D translation vector b such that each point x in the first image is transformed to Ax + b