
Techniques for Indexing and Querying Temporal

Observations for a Collection of Objects�

�CS�TR����� � UMIACS�TR������	�

Qingmin Shi and Joseph JaJa
Institute for Advanced Computer Studies

Department of Electrical and Computer Engineering

University of Maryland� College Park� MD ������ USA

fqshi�joseph�umiacs�umd�edug

Abstract

We consider the problem of dynamically indexing temporal observations about a collec�
tion of objects� each observation consisting of a key identifying the object� a list of attribute
values and a timestamp indicating the time at which these values were recorded� We make
no assumptions about the rates at which these observations are collected� nor do we assume
that the various objects have about the same number of observations� We develop indexing
structures that are almost linear in the total number of observations available at any given
time instant� and that support dynamic insertions in polylogarithmic time� Moreover� these
structures allow the quick handling of queries to identify objects whose attribute values fall
within a certain range at every time instance of a speci�ed time interval� Provably good
bounds are established�

� Introduction

Consider the scenario in which temporal observations about a large collection of objects are
being collected asynchronously� Each observation record consists of a key identifying the
object� a list of the values of a number of attributes� and a timestamp indicating the time
at which these particular values were recorded� We make no assumptions about the rates at
which these observations are collected� nor do we assume that various objects will have the
same number of observations� In fact� we even allow the collection of objects to vary with
time� with possibly new objects inserted into our collection� The only assumption we make
is that the timestamp of a new observation record for a given object has to be larger than
the timestamp of the object�s observations that are already stored in our data structure�
This assumption seems to be quite natural for the types of applications we have in mind�

�Supported in part by the National Science Foundation through the National Partnership for Advanced
Computational Infrastructure �NPACI�� DoD�MDProcurement under contract MDA�����C���	� and NASA
under the ESIP Program NCC
����

�

We are interested in storing these observations into an indexing structure that will en�
able the quick discovery of temporal patterns� For our purposes� the patterns of interest
can be de�ned as the values of certain attributes remaining within certain bounds� changing
according to a given pattern� or satisfying certain statistical distributions� for every obser�
vation with a timestamp falling within a given time interval� We will focus in this paper
on detecting the objects whose temporal patterns are characterized by a set of value ranges�
More speci�cally� we want to dynamically maintain an indexing structure so as to quickly
identify objects whose attributes consistently fall within a set of ranges during a given time
period�
We next introduce the problem more formally and give a few possible applications that

will �t under this framework�

��� Problem De�nition

Consider a set S of n objects fO�� O�� � � � � Ong� each identi�ed by a key oi and characterized
by a set of d attributes fvi���t�� vi���t�� � � � � vi�d�t�g whose values change over time t� Obser�
vations about each object are collected at discrete time instances� Let mi be the number
of observations about object Oi� say collected at time instances t�i � t�i � � � � � tmi

i � We
denote the observations of Oi at t

j

i as a vector v
j

i 	
v
j

i��� v
j

i��� � � � � v
j

i�d�� where v
j

i�l 	 vi�l�t
j

i � for
l 	 �� � � � � d� The total number of observations for all the objects in S is m 	

P
i�������n mi�

We denote the number of distinct time instances among ftji j� � i � n� � � j � mig as m��
Note that m� � m�
We are interested in developing dynamic data structures to index all the observations so

that the following type of queries� called temporal range queries� can be handled quickly�

Given two vectors a 	
a�� a�� � � � � ad� and b 	
b�� b�� � � � � bd�� and a time interval

ts� te�� determine the set Q of objects such that Oi � Q if and only if the following
two conditions are satis�ed�

� �j such that tji � ftlijl 	 �� � � � �mig and ts � tji � te� i�e�� there is at least
one observation of Oi recorded between ts and te�

� �j such that tji � ftlijl 	 �� � � � �mig and ts � tji � te� ak � vji�k � bk for all
� � k � d�

We will call each such object a proper object with respect to the query�
We allow new observations to be incorporated into the existing data structure� Whenever

it happens� we assume that the timestamp associated with a new observation is larger than
that of any previous observation of the same object� However� we allow the timestamp of a
new observation to be smaller than the timestamps of observations related to other objects�
We note that the condition that at least one observation exists in the time interval
ts� te�

can be relaxed as follows� We construct a set of intervals f�tji � t
j��
i �jj 	
� � � � �mig for each

object Oi� where t�i 	 �� and tmi��
i 	 ��� Reporting objects with no observation in
ts� te�

is equivalent to reporting intervals that contain
ts� te�� which can easily be performed using
a priority search tree
��� in O�log n � f� time �note that only one interval will be reported
for each such object�� The priority search tree can handle insertions of new observations as

�

well� The complexity of maintaining the correct set of intervals in the priority search tree
for each insertion of a new observation is O�log n� time�
The complexity of our algorithms will be measured by the storage cost of the data struc�

ture� the time spent on answering a temporal range query� and the time it takes to incorporate
a new observation into our data structure� We will represent these costs as functions of n�
m and d� where d is typically considered to be a constant�
The problem described here is more general than the one discussed in our previous

paper
���� in which we require that the observations of these objects are collected in a
synchronized fashion� That is� the observations of the objects are all collected at the same
time instances� In addition� only the static case was addressed in that paper�

��� Sample Applications

Many applications seem to involve the general problem described above� A typical scenario
consists of a large distributed network of sensors asynchronously collecting some type of
measurements� and sending these measurements to a central location for storage� real�time
access� and mining� Two examples are provided next�

� Environmental monitoring� A large number of sensors are distributed over speci�c geo�
graphic areas� each working independently and collecting measurements about various
environmental factors �such as temperature� humidity� and wind speed� etc�� These
measurements� each coupled with a key identifying the sensor �and hence the geo�
graphic area� and a timestamp are sent to a central server� Users will query the
central server to discover spatio�temporal environmental patterns based on the infor�
mation collected thus far� and try to relate them to di�erent physical phenomena�

� Marine tra�c control� We have a number of vessels� each reporting its position �and
possibly some other information� to a tra�c center on a regular basis� The sta� at
the tra�c center may want to identify the vessels whose trajectories lied in a certain
region during a time interval�

��� Previous Related Work

A special case of our problem is the well�studied d�dimensional orthogonal range search prob�
lem� In spite of the existence of an extensive literature� only a limited number of special
orthogonal range search problems admit linear space data structures with polylogarithmic
query time solutions� These special problems include the three�sided ��D range queries
���
and the ��D dominance queries
�� ���� Otherwise� all fast query algorithms require non�
linear space� sometimes coupled with matching lower bounds under certain computational
models
�� �� ���� Note that we cannot treat our problem as an orthogonal range search
by simply treating the time snapshots as just an extra time dimension added to the d di�
mensions corresponding to the attributes� This is the case since the observations collected
at di�erence time instances for the same object cannot not be treated as independent of
each other� However another version of our problem� in which there exists some observation
in
ts� te� which satis�es the required bounds� can be reduced to the so called generalized
intersection problem addressed in
��� �
��

�

A related class of problems that have been studied in the literature� especially the
database literature� deals with time series of data by appending a timestamp �or time inter�
val� to each piece of data separately� thus treating each record� rather than each object� as
an individual entity� As far as we can tell� none of these techniques seem to be suitable to
address the general problem de�ned in this paper� Examples of such techniques include those
based on persistent data structures
��� such as the Multiversion B�tree
���� and Multiversion
Access Methods
���� and the Overlapping B��trees and its extensions
��� ��� ��� ���� Even
though these techniques work well for queries that involve only a single time instance� they
do not capture temporal information about individual objects� nor do they seem to be able
to e�ciently handle long time intervals �the query time of these methods typically depends
on the length of the time interval� which is undesirable for our general problem since the
temporal range query could cover a very long time period characterized only by the two
parameters ts and te�� See
��� for a recent survey about these techniques�
Some work does explicitly address queries that involve time intervals� especially in in�

dexing moving objects� However� they all deal with the �or� queries� queries that report an
object if its values fall in the query ranges at some time within the query interval� which
is quite di�erent from our problem� In the case where the objects are assumed to be mov�
ing along a straight line and at constant speed� which implies that the positions of the
objects need not be explicitly stored� solutions with provable bounds exist �See for exam�
ple
�� ��� ����� In other cases� where the trajectories of objects are recorded as sequences
of line segments� practical algorithms have only been proposed with no guaranteed bounds�
such as in
�� �
��
We start by addressing the special case when there is only one attribute for each object�

We deal in Section � with the static case� where them observations about the di�erent objects
are given as input for preprocessing� and propose three solutions with di�erent space�time
trade�o�s� In Section �� we show how these solutions can be made dynamic so that new
observations can be e�ciently incorporated into the existing structures� We generalize these
techniques in Section � for an arbitrary number of attributes whenever we have a prede�ned
time hierarchy� and in Section � we brie�y mention how to extend our techniques to handle
queries that also involve key ranges�

� One�Sided Temporal Range Queries� The Static Case

One of our goals in designing the indexing structure and query algorithm is to make sure
that no proper object will be missed and the query complexity is proportional to the number
of such objects� To achieve this goal� we �rst transform the query on objects to a query on
identifying speci�c observations� Our approach is based on enhancing each observation with
additional information such that for each proper object� exactly one of its observations will
be reported�

��� Preliminaries

Let vji denote the observation of object Oi at time instance t
j
i � Given a query represented by

the triple �ts� te� a�� we aim at identifying the objects that have at least one observation during

�

the time interval
ts� te� and whose observations within that time interval are all greater than
or equal to a� We call this type of queries one�sided temporal range queries�
We will give three solutions to this problem� each providing a tradeo� between the storage

cost and the query time� To develop these algorithms� we reformulate our problem to make
use of a number of known techniques borrowed from computational geometry�
We start by making the following straightforward observation�

Observation �� An object Oi is proper with respect to the query �ts� te� a� if and only if
minfvji jts � tji � teg 	 a�

Note that we de�ne minfvji jts � tji � teg 	 �� whenever no j exists such that ts �
tji � te� We de�ne the dominant interval Iji 	 �s

j
i � e

j
i� of observation vji as the longest time

interval during which vji is the smallest observation of Oi� More speci�cally� let v
j�
i be the

latest observation such that j� � j and vj�i � vji and v
j�
i be the earliest observation such that

j� � j and vj�i � vji � Then s
j
i 	 j� and e

j
i 	 j�� If j� does not exist� then s

j
i 	 ��� Similarly�

eji 	 �� if j� does not exist� Note that I
j
i is an open interval� meaning that it does not

include the time instances sji and eji � We thus transform an observation vji into a ��tuple
�or tuple for short� �vji � t

j

i � s
j

i � e
j

i � oi�� Figure � shows an object with eight observations� taken
at time instances �� �� � � � � �� For example� the dominant of interval of the �th instance is
���� �� and that of the �th instance is ��� ��� The following lemma shows that there exists
a unique representative tuple for each proper object�

t

v

1 4 5

8 4 3 1 7 2

32 6 7 8

6 3

1 3

2 5 7

4 8

6

Figure �� Dominant intervals for a time�series of observations corresponding to an object�

Lemma �� An object Oi is proper with respect to the query �ts� te� a� if and only if there
exists a unique tuple �vji � t

j
i � s

j
i � e

j
i � oi� such that �sji � e

j
i�

ts� te�� t

j
i �
ts� te�� and vji 	 a�

Proof� By de�nition an object Oi is proper if during the time interval
ts� te� no observation
is smaller than a� Let vji 	 minfvlijts � tli � teg �it always exists for a proper object��
where j is the smallest such index if multiple minima exist� It is obvious that the tuple
�vji � t

j
i � s

j
i � e

j
i � oi� satis�es the three conditions stated in the lemma� On the other hand� if Oi

is not proper� then either there is no observation of Oi in
ts� te�� or the value of at least one
such observation is less than a� In the latter case� no interval �sli� e

l
i� with tli �
ts� te� and

vli 	 a will be able to cover
ts� te�� The uniqueness of this tuple is due to the fact that the
dominant intervals are maximal�

Lemma � reduces the problem of determining the set of proper objects to �nding for each
such object one tuple that satis�es the three stated conditions� In the next sections� we show
that such tuples can be e�ciently identi�ed using techniques from computational geometry�

�

��� An O�m logm��Space O�logn logm � f��Time Solution

The indexing structures we propose in this and the next sections both follow the strategy
of �rst singling out those tuples whose corresponding observations are collected during the
time interval
ts� te� and then �ltering them using the remaining two conditions� We call
the data structure proposed in this section the fast temporal range tree �FTR�tree� because
it is the fastest among the three solutions proposed� and the one discussed in Section ����
which uses less space but requires more query time� is called the compact temporal range tree
�CTR�tree��
Let �t�� t�� � � � � tm�� be the sorted list of all the distinct time instances� The skeleton of

the FTR�tree is a balanced binary tree T built on this list� Each node u is associated with a
set S�u� of up to n tuples �n is the number of objects�� If u is the kth leaf starting from the
left� then S�u� 	 f�vji � t

j
i � s

j
i � e

j
i � oi�jt

j
i 	 tkg� If u is an internal node with two children v and

w� we decide for each object Oi which tuple to be added to S�u� by examining the tuples
corresponding to Oi in v and w� If S�v� and S�w� do not contain any such tuple� then no
tuple for Oi will be added to S�u�� If only one of them do� then that tuple is included in
S�u�� If both of them do� then the tuple with the longest dominant interval is chosen� Note
that in this case the longer interval always contains the shorter one� Figure � illustrates how
the tuples associated with each node are collected for an example consisting of two objects
and a total of �� observations� In this example� each node is associated with up to � tuples�
the one above the horizontal line corresponds to object O� and the one below it corresponds
to object O�� We omit the values of t

j
i and oi for each tuple�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t

48 6 3 5 1 7 2

25 4 1 7 3 6 8O2

O1

(8,- ,3) (4,- ,7)
(6,3,7)

(3,- ,9)
(5,7,9)

(1,- ,) (7,9,15) (2,9,)

(2,- ,10) (1,- ,) (3,10,) (6,12,) (8,14,)

8 8

8 8

8 8 8
8 8 8 8 8

8

(1,- ,)
(1,- ,)

(1,- ,)

(3,- ,9) (1,- ,)

(2,9,)(4,- ,7)

(4,- ,7)

(8,- ,3)

(5,- ,5)

(2,- ,10)

(2,- ,10)
(3,- ,9)

(1,- ,)

(2,- ,10) (1,- ,) (6,12,)
(2,9,)

(6,12,)
(7,9,15)

(3,10,)(1,- ,)
(1,- ,)(3,- ,9) (5,- ,5)

8
8 8

8

8 8
8 8

8
8 8

8

8

8
8

8
8 8

8

8
8

8
8

8 8
88

8
8 8

 (5,- ,5)
(4,5,10) (7,10,12)

8
8

8(8,14,)

Figure �� The observations of two objects and the corresponding FTR�tree�

Given a query �ts� te� a�� we can easily �nd the set of at most ��logm���� allocation nodes
in T that correspond to the interval
ts� te�� An allocation node is a node whose corresponding
time interval is fully contained in
ts� te� and that of whose parent is not� For each allocation
node v� we know that all the O�n� tuples in S�v� correspond to observations taken during
the time interval
ts� te�� Therefore we only need to report those tuples in S�v� that satisfy

�

�sji � e
j
i �

ts� te�� and vji 	 a� Lemma � guarantees that exactly one such tuple will be

reported for each proper object whenever tji �
ts� te�� No further search on v�s descendants
is necessary�
One �nal note is that� even though an object is stored multiple times in the form of its

representative tuples� it will be reported at most once� This can be seen as follows� If an
object is reported� then only one of its m tuples satis�es the conditions derived from the
query� Even though a tuple may be stored in up to logm� � � nodes� these nodes form a
su�x of the path from the root to its corresponding leaf node and� as a result� only the
allocation node will be considered�
For each allocation node v� looking for tuples �vji � t

j

i � s
j

i � e
j

i � oi� that satisfy �s
j

i � e
j

i �

ts� te�
and vji 	 a is equivalent to a three dimensional dominance reporting problem� which can be
solved in O�log n�v� � f�v�� time and O�n�v�� space using the data structure of Makris and
Tsakalidis
���� which we call the dominance tree� where n�v� is the number of tuples stored
in v and f�v� is the number of tuples reported�
The storage cost of this data structure can be estimated as follows� First� since any tuple

can appear at most once at each level of the tree T � the total number of tuples stored in T
is O�m logm�� Second� we have at most �m � � nodes in the tree T and each node stores
at most n tuples� Hence the total number of tuples is O�mn�� Since the dominance tree
associated with each node in T is linear in the number of tuples stored there� the overall
storage cost is O�mmin�logm�n��� As to the search complexity� �nding the allocation nodes
takes O�logm� time� and O�log n � f�v�� is spent at each such node v with f�v� tuples
corresponding to proper objects� We thus have the following algorithm�

Theorem �� Using O�mmin�logm�n�� space� any one�sided temporal range query involving
n objects with a total number of m observations can be handled in O�log n logm� f� time�
where f is the number of objects satisfying the query�

��� An O�m��Space O�logm�log n� f���Time Solution

The solution in the previous section requires non�linear space because a tuple could be stored
at multiple levels of the primary tree T � For example� if the �rst two observations of object
Oi are taken at time t� and t�� then the tuple associated with v�i is stored at least in the
leftmost node at each of the three bottom levels of T � Indeed� it is easy to construct an
example where each of the m observations will be replicated O�log�m�n�� times�
To reduce the storage cost� we have to remove these duplicates� Consider an arbitrary

observation vji stored in an node u of T � We stipulate that v
j
i be removed from u if there

is no observation of Oi stored in the sibling of u� We illustrate this new structure using the
same example shown in Figure �� with the tuples removed according to this new rule shown
in gray color�

Lemma �� The modi�ed data structure uses O�m� space�

Proof� Since the auxiliary data structure associated with each node of T is linear in the
number of tuples stored there� we only need to show that the total number of tuples in
T is O�m�� To accomplish this� it su�ces to demonstrate that the total number of tuples
corresponding to each object Oi is O�mi�� This becomes obvious if we view the primary tree

�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t

48 6 3 5 1 7 2

25 4 1 7 3 6 8O2

O1

(6,3,7)
(3,- ,9)

(5,7,9)
(1,- ,) (7,9,15)

(2,- ,10) (1,- ,) (3,10,) (6,12,) (8,14,)

8

8 8

8 8
8 8 8 8 8

8

(1,- ,)
(1,- ,)

(1,- ,)

(3,- ,9) (1,- ,)

(2,9,)(4,- ,7)

(4,- ,7)

(8,- ,3)

(5,- ,5)

(2,- ,10)

(2,- ,10)
(3,- ,9)

(1,- ,)

(2,- ,10) (1,- ,) (6,12,)
(2,9,)

(6,12,)
(7,9,15)

(3,10,)(1,- ,)
(1,- ,)(3,- ,9) (5,- ,5)

8
8 8

8

8 8
8 8

8
8 8

8

8

8
8

8
8 8

8

8
8

8
8

8 8
88

8
8 8

(4,5,10) (7,10,12)

8
8

8(8,14,)

8

 (5,- ,5)

8(8,- ,3) (4,- ,7) (2,9,)

Figure �� The observations of two objects and the corresponding CTR�tree�

nodes that contain a tuple of Oi as the nodes of another tree Ti� The children of a node u
in Ti is its nearest descendants in T with regard to Ti� A node v in T is called a nearest
descendant of u with regard to Ti if v is in Ti and there is no node v� in Ti such that v� is a
descendant of u and an ancestor of v in T � It is easy to realize that Ti is a full binary tree�
and each leaf of Ti contain a distinct tuple of Oi� Hence the number of tuples stored in Ti is
O�mi��

A negative e�ect of this reduction in storage cost is that it is no longer su�cient to only
search the allocation nodes corresponding to the time interval speci�ed by the query� since a
tuple that would previously be stored in an allocation node v may now only appear at some
ancestors of v� To ensure the correctness of our algorithm� we search not only the allocation
nodes� but also the nodes on the path from the root to them� Although no proper object will
be missed in this process� some tuples that do not satisfy the conditions stated in Lemma �
may be mistakenly reported� Consider a tuple �vji � t

j
i � s

j
i � e

j
i � oi� found in an ancestor of an

allocation node which satis�es the conditions �sji � e
j
i �

ts� te� and vji 	 a� Its timestamp

tji could be outside
ts� te�� Fortunately� the corresponding object Oi is still proper since the
observation vji is smaller than or equal to any observation during
ts� te�� An object may be
reported at most O�logm� times� once at each level of T �
The search time depends on the number of nodes visited� as O�log n� time is taken at

each of them� The following lemma completes our complexity analysis�

Lemma �� The total number of nodes on the paths from the root to the allocation nodes is
O�logm��

Proof� Consider the embedded tree T � that consists of all the nodes on the paths from the
root of T to the allocation nodes� Let �l �resp� �r� be the set of leftmost �resp� rightmost�
nodes at each level of T �� It is easy to see that each internal node of T � which is not on �l

nor on �r has two children� that each internal node on �l has a right child� and that each

�

internal node on �r has a left child� For each internal node v of T � on �l that does not have
a left child� we add one� and we add right children to those internal nodes on �r which do
not have one� By doing so� we turn T � into a full binary tree� and we have added at most
two leaf nodes during the process� Clearly� the number of internal nodes of the full binary
tree T � is O�logm� as the number of its leaf nodes is O�logm��

Theorem �� Using O�m� space� any one�sided temporal range query involving n objects
with a total of m observations can be answered in O�logm log n � f logm� time� where f is
the number of proper objects�

��� An O�m��Space O�log�m � f��Time Solution

In this section� we give a linear space solution that reports each proper object exactly once�
We call it linear temporal range tree �LTR�tree�� In designing the LTR�tree� we apply twice
the interval tree techniques of Edelsbrunner
�� and use dominance trees to handle the queries�
Rewriting the conditions stated in Lemma �� we have ts � �s

j
i � t

j
i �� te �
t

j
i � e

j
i �� and

vji 	 a� Handling such a query can be viewed as a geometrical retrieval problem� Each tuple
�vji � t

j

i � s
j

i � e
j

i � oi� can be viewed as a rectangular plate in a three�dimensional space whose
edges are parallel to the x� and y�axes� and whose projections to these two axes are �sji � t

j
i �

and
tji � e
j
i � respectively� and the query can be viewed as �nding the plates that are intersected

by a ray perpendicular to the x�y plane shooting in the direction of positive z�axis from the
point �ts� te� a�� Figure � illustrates such a geometrical interpretation of the query�

t i
j

s i
j

e i
j

t
j
i

(t ,t ,a)s e

v i
j

z

x

y

Figure �� Illustration of the plate intersection problem�

We consider the projections of these plates to the x�y plane� which are rectangles� The
primary structure of the LTR�tree is a balanced binary tree built by recursively partitioning
these rectangles according to the x�coordinates of their vertical edges� We choose a vertical
line x 	 x�r� such that half of the distinct verticals of these rectangles are to the left of it and
the other half to the right� and store the value x�r� at the root node r of the primary interval
tree T � This vertical line partitions the set of rectangles into three groups� those whose

�

corresponding horizontal edges are intersected by the partition line� f�vji � t
j
i � s

j
i � e

j
i � oi�js

j
i �

x�r� � tjig� those rectangles that are completely to its left� f��v
j
i � t

j
i � s

j
i � e

j
i � oi�jt

j
i � x�r�g�

and those completely to its right� f�vji � t
j

i � s
j

i � e
j

i � oi�js
j

i 	 x�r�g� We associate the tuples that
correspond to the �rst group of rectangles with the root node and recursively construct its left
and right subtrees for the tuples corresponding the latter two sets of rectangles respectively�
See Figure � for an example� in which the rectangles A� B� and E are associated with the
node r� D and G with the subtree rooted at node u� and C and F with the subtree rooted
at node v�

x(r)

A
B

CD

E
F

G

x(u) x(v)

r

u v

x

y

{A,B,E}
{D,G} {C,F}

Figure �� An LTR�tree�

Each node v of T is now associated with a set S�v� of tuples� Similar to the construction
of the primary interval tree� we build a secondary interval tree T �v� on S�v�� this time based
on the y�coordinates of the horizontal edges of their corresponding rectangles� By doing
so� we further distribute the tuples in S�v� to the nodes of T �v�� To be exact� a node �
of T �v� with a partition line y 	 y��� contains tuples that satisfy tji � y��� � eji � its left
subtree contains tuples that satisfy eji � y���� and its right subtree contains tuples that
satisfy tji � y����
For the tuples associated with each node � of T �v�� we construct four versions T�����

T����� T����� and T���� of the dominance tree� for the following point dominance queries
respectively� �� �ts � sji � te 	 tji � v

j
i 	 a�� �� �ts � sji � te � eji � v

j
i 	 a�� �� �ts � tji � te 	 tji � v

j
i 	

a�� �� �ts � tji � te � eji � v
j
i 	 a��

To analyze the storage cost of this data structure� we �rst notice that a tuple is stored
in exactly one secondary tree� In this secondary tree� it is stored in at most � dominance
trees� Since a dominance tree is linear in the number of tuples stored there� the total size of
all the dominance trees is O�m�� for the same reason� the overall size of the secondary tree
is also O�m�� and �nally� the primary tree is of size O�m��
To answer a query �ts� te� a�� we start from the root of the primary tree r� We �rst access

the secondary tree T �r� to report tuples stored at r� Then we check if ts � x�r�� If this is
the case� we recursively access the subtree rooted at r�s left child� otherwise� we recursively
access the subtree rooted at r�s right child� When accessing a secondary tree T �u�� we start
from its root �� We �rst compare te with y���� Depending on whether ts � x�u� and whether
te � y���� we access one of the four dominance trees associated with �� More speci�cally� we
access T���� if ts � x�u� and te � y���� T���� if ts � x�u� and te 	 y���� T���� if ts 	 x�u�
and te � y���� and T���� if ts 	 x�u� and te 	 y���� After the points associated with � are

�

reported� we recursively access its left child if te � y��� or its right child otherwise�
To demonstrate the correctness of the query algorithm� let�s follow one search path during

the handling of query �ts� te� a�� At a node v being visited� suppose ts � x�v�� then all the
tuples stored in T �v� satisfy ts � tji � At a node � of T �v� being visited� suppose te 	 y����
Then all the tuples stored in T �v� satisfy te 	 tji � Therefore� we only need to �lter these
tuples using the conditions �ts � sji � te � eji � and vji 	 a�� which is exactly what T���� is
designed to do� It is easy to verify that the tuples stored in T����� T����� and T���� cannot
satisfy the query� Also due to the fact that te 	 y���� no tuples stored in the ��s left subtree
will be reported� so we only need to recursively access its right subtree� Similarly� when the
access to the node v is �nished� we only need to recursively access its left subtree�
Now we analyze the complexity of the query algorithm� To answer a query� we need to

access O�logm� primary tree nodes� one at each level� For each such node v� O�logm� nodes
in T �v� need to be processed� And �nally� for each node � in T �v� visited� O�logm� f����
time is spend to access one of its associated dominance trees� where f��� is the number of
tuples reported� Note that each tuple that satis�es query will be reported exactly once�

Theorem �� Using O�m� space� any one�sided temporal range query involving n objects with
a total of m observations can be answered in O�log�m� f� time� where f is the number of
proper objects�

� One�Sided Temporal Range Queries� The Dynamic

Case

In this section� we consider the problem of designing dynamic indexing structures that enable
the quick handling of temporal range queries and at the same time can be e�ciently updated
when new observations are added� As stated before� we make the assumption that the
timestamp of a new observation of an objectOi is larger than that of any existing observation
ofOi� Note that adding a new object simplymeans adding the �rst observation of that object�
Since our solution will use the characterization given in Lemma �� we need to examine

the changes that will occur to the object�s tuples when a new observation of that object is
inserted� In Section ���� we show how to quickly determine the tuples that need to be updated
and the one tuple to be inserted due to the introduction of a new observation� Since our
algorithms will use the ��D dominance query data structure� we introduce a data structure for
the dynamic case in Section ���� This data structure is a crucial component of the dynamic
versions of our temporal range trees� which will be presented in Sections ��� through ����
We will describe in detail the �dynamization� of the FTR�tree� The techniques introduced

can also be used to �dynamize� the other two temporal range trees� Therefore� for these two
structures� we will only comment on the new issues they raise�

��� Creating and Updating Tuples

The addition of new observations may require that many of the existing tuples corresponding
to the same object be updated to re�ect the possible change of their dominant intervals� To
facilitate the quick identi�cation of such tuples� we maintain a Cartesian tree
��� Ci for

��

each object Oi� A Cartesian tree for a sequence �t
j
i � v

j
i �� � � j � mi� is a binary tree with

mi nodes� The root stores the smallest value v
j
i over the time interval
t

�
i � t

mi

i �� where j is
the smallest such index if multiple minima exist� Its left child is the root of the Cartesian
tree for observations fv�i � � � � � v

j��
i g� and its right child is the root of the Cartesian tree for

observations fvj��i � � � � � vmi

i g� Note that a node may not have a left or right child� The
Cartesian tree Ci can be built in O�mi logmi� time by inserting the observations in order of
their timestamps� using an algorithm that we discuss later�
Let vmi��

i be the new observation of object Oi with a timestamp t
mi��
i � where tmi��

i � tmi

i �
Let �i be the rightmost path of the Cartesian tree Ci before the addition of v

mi��
i and �i

be the pre�x of �i such that each node on �i� except the root� is the right child of its
parent� To update Ci� we �rst �nd the pair of parent�child nodes upred and usucc on �i

and the corresponding observations v
jpred
i and vjsucci such that v

jpred
i � vmi��

i � vjsucci � Note
that upred �usucc� is null if v

mi��
i is less than �greater than or equal to� all the observations

associated with �i� Since the values of the observations corresponding to the nodes on �i

are non�decreasing from the root� we can easily �nd this pair in O�logmi� time using binary
search�
Now consider the parent node upred and the child node usucc� If upred is not null� then the

new node u that corresponds to vmi��
i becomes its right child� If usucc is not null� it becomes

the left child of u� The node u becomes the root of the new Ci if upred is null� Figure � shows
how the additions of two new observations v�i 	 � and v

��
i 	 � for object Oi is handled� The

path �i can be maintained in an array whose size is hi� where hi is the length of �i�

8

6

4

3 3

2

7

1 1

8

6

4

3 3

1

2

7

1

5

u pred

8

6

4

3 3

1

2

7

u succ

u pred

= v9
i

= v10
i

Figure �� The addition of two new observations to an existing Cartesian tree�

The following lemma guarantees that on average� only a constant number of tuples need
to be updated�

Lemma �� Let mi be the number of observations of object Oi maintained in the current
Cartesian tree Ci prior to the insertion of the new observation vmi��

i with a time stamp
tmi��� Then the g tuples that need to be updated after inserting vmi��

i can be identi�ed
in O�logmi � g� time� Furthermore the amortized value of g over the next mi insertions
corresponding to Oi is at most ��

��

Proof� Consider the insertion of a new observation vmi��
i of Oi� It easy to realize that for any

� � k � mi� if v
k
i � vmi��

i � then its dominant interval �ski � e
k
i � does not change� Furthermore�

for any observation vji stored in a descendent of a left child of a node v on �i� we know that

its dominant interval will be limited from the right by the timestamp of vj
�

i which is stored
in v and thus will not be a�ected by the insertion of the new instance� Therefore we only
need to update the tuples whose corresponding observations are associated with the su�x
of �i� starting from usucc� Indeed� for each such tuple� whose dominant interval is in the
form �s����� the updated dominant interval will be �s� tmi��

i �� We also need to add the
tuple �vmi��

i � tmi��
i � jpred���� oi� that corresponds to the �mi � ���th observation of Oi� or

�vmi��
i � tmi��

i ������� oi� if upred is null�
Let hj

i be the length of �i in the version of Ci with j observations and l
j
i be the height of

the node uprec� i�e�� the number of nodes on the path from the root to uprec� including uprec�
It is clear from the previous analysis that hj

i � lji existing tuples need to be updated� These
tuples can be retrieved in O��� time each� provided that usucc has been located� a task that
can be done in O�log hj

i � time� Furthermore� the length h
j��
i of the new �i after the addition

is lji � ��
Now consider the mi consecutive additions of new observations of object Oi� assuming

thatmi observations have already been recorded� The number of tuples to be updated during
these mi insertions is given by�

�mi��X
j�mi

hj
i � lji 	

�mi��X
j�mi

hj
i � �h

j��
i � �� 	 hmi

i � h�mi

i �mi � �mi� ���

Therefore the amortized number of tuples to be modi�ed per insertion over the next mi

insertions is less than ��

The following lemma shows that that the aggregate number of tuples that need to be
updated over a sequence of inserting m observations is less than �m�

Lemma �� Let m be the number of observations maintained in the current primary data
structure corresponding to all the objects� Then the aggregate number of tuples that need to
be updated over the insertions of the next k new observations is less than m� k�

Proof� Let n� be the number of objects in the data structure after the k insertions� and let
mi and ki� with i 	 �� � � � n�� be respectively the numbers of current and new observations
corresponding to object Oi� Note that Oi may not have any observations in the current data
structure� in which case mi 	
�
Using the notation of the proof of Lemma � and similar to Equation �� we can calculate

the number of tuples to be updated during these m insertion asPn�

i��

Pmi�ki��
j�mi

�
hj

i � lji
�

	
Pn�

i��

Pmi�ki��
j�mi

�
hj
i � hj��

i � �
�

	
Pn�

i��

�
hmi

i � hmi�ki
i � ki

�
�
Pn�

i�� �mi � ki�
	 m� k�

���

��

Lemma � allows us to handle the insertions by �rst identifying the old tuples that need
to be updated� followed by performing each of the updates� and �nally adding the new tuple�
Note that if we start from an empty data structure� then the amortized cost for including a
new observation is one update operation and one insertion� On the other hand� if we start
from a data structure that already contains m tuples� then the amortized cost for inserting
a new observation over the next m insertions is at most two update operations and one
insertion�

��� Dynamic Data Structures for ��D Dominance Queries

Once we identify the tuples to be modi�ed and the new tuple to be inserted� we need to
update the corresponding data structures for handling dominance queries� In particular�
we have to remove the points corresponding to old tuples and insert the points associated
with the updated tuples� Although the dominance tree described before has very good
performance in terms of space and query time� it does not appear to be suitable for the
dynamic case� To make our data structure dynamic� we use a combination of the range tree
and the priority search tree� a structure that we will refer to as the dynamic dominance tree�
to solve the ��D dominance query problem� We now elaborate on this data structure using
the version of dominance query in which we are asked to �nd all the points p 	 �px� py� pz�
that are dominated by a query point q 	 �qx� qy� qz�� i�e�� px � qx� py � qy� and pz � qz�
Given a set of n three dimensional points� we �rst build a weight�balanced tree
�� T of

degree c on the z�coordinates sorted in increasing order� where c is a constant� A weight�
balanced tree storing n points is a dynamic search tree of O�log n� height which supports
insertion and search in O�log n� time� More importantly� if a node whose subtree has w leaf
nodes is split� then for each new node created as a result of this split� at least ��w� insertions
have to pass through it to make it split again�
For each internal node v� we build a priority search tree
��� that stores the set of points

in the subtree of v projected onto the x�y plane� Recall that a priority search tree containing
n elements requires O�n� space and O�n log n� preprocessing time� and can handle search�
insertion� and deletion operations in O�log n� time
���� A dominance query can be answered
by �rst identifying the O�c log n� allocation nodes in T that together correspond to the z�
range ���� qz�� and then searching the corresponding priority search trees to answer the
query �px � qx� py � qy�� The query time is O�log

� n�f� and the space required by the data
structure in O�n log n��
To insert a point� we �rst perform a virtual insertion to handle any necessary node split

in T � When a node is split� the priority search trees of the two newly created nodes are built
from scratch� Since the total size of the priority search trees stored in a subtree rooted at
a node v is asymptotically the same as the number of leaves in that subtree� the amortized
cost of this split is O�log n�� After that� the new point is inserted into T as well as into the
priority search trees on the path from the root to its corresponding leaf node� This process
takes O�log� n� time�
Deletion can be done using global rebuilding technique
���� For each node on the path

from the root to the leaf corresponding to the point being deleted� we remove this point from
its associated priority search tree in an overall O�log� n� time� We do not delete the leaf
node in the primary tree at this time� Instead� we wait until n�� deletions have happened

��

and then rebuild the entire data structure using O�n log� n� time�
Generalization of the above results to higher dimensions is straightforward� and can be

summarized by the following lemma�

Lemma �� For any d 	 �� using O�n logd�� n� space and O�n logd�� n� preprocessing� we
can store n d�dimensional points in a data structure such that dominance queries can be
answered in O�logd�� n � f� time and updates can be performed in O�logd�� n� amortized
time�

��� Dynamic FTR�tree

To make the structure in Section ��� dynamic� we replace the binary tree built on the time
instances by a weight�balanced tree T of degree c� Each node is associated with a set of
tuples� each representing an object� The dominant interval of a tuple associated with an
internal node v contains the dominant intervals of all the tuples stored in the subtree of
v representing the same object� With each node v of T � we store the dynamic dominance
tree structure Tdom�v� built on the tuples stored at v� and a dynamic binary search tree�
say a red�black tree
��� Tkey�v� built on the keys associated with these tuples� It can be
shown using similar arguments as in the static case that the size of our data structure will
be O�m log nminflogm�ng� �the extra log n factor is due to the dynamic dominance tree
structure being used��
The query process is almost the same as in the static case� The only di�erence is that

we now have up to O�c logm� allocation nodes� each of which takes O�log� n� f�v�� time to
search�
There are two major steps required to update our overall data structure� The �rst is to

update the tuples that are no longer valid� and the second is to insert the new time stamp
and the new tuple into the primary tree�
Consider the update step� Suppose that the tuple �vli� t

l
i� s

l
i� e

l
i� oi� needs to be updated�

Notice that the entry tli of this tuple does not change� Therefore� there is no need to update
the primary tree� Furthermore� we have the following lemma�

Lemma �� An updated tuple associated with a previous observation should be stored in the
auxiliary tree structures Tdom�v� and Tkey�v� of the new primary structure if and only if the
old tuple is also stored there�

Proof� This lemma is immediate once we realize that the node at which a tuple �vji � t
j

i � s
j

i � e
j

i � oi�
resides depends solely on its value vji and timestamp t

j
i � which do not change when a new

observation is inserted�

Therefore� what we need to do is to go through each node on the path from the root to
the leaf node corresponding to tli� For each node v on this path� we search Tkey�v� using oi
to �nd the old tuple and replace it with the new one� Then we remove the same old tuple
from� and insert the new tuple into� Tdom�v�� The whole process takes O�logm log

� n� time�
To add a new tuple �vj��i � tj��i � sj��i ���� oi�� we �rst insert the new time instance into

the primary tree T � This may cause up to O�logm� nodes to split� which can be handled in
O�logm log� n� amortized time following similar arguments as in Section ���� To insert the

��

new tuple� we traverse the path from the leaf node corresponding to tj��i up toward the root�
At each node v visited� we search the representative tuple for Oi in Tkey�v� using oi� If there
is no such tuple� we insert the new tuple into both Tkey�v� and Tdom�v�� If one such tuple is
found� we check if it needs to be replaced by the new tuple� If it does� then we remove the
old tuple from and insert the new tuple into both Tkey�v� and Tdom�v�� Otherwise� we do not
need to visit any of v�s ancestors�

Theorem �� Any temporal range query involving n objects with a total number of m obser�
vations can be answered in O�logm log� n�f� time using a data structure of size O�m log n �
minflogm�ng�� This data structure can be constructed in O�m logm log� n� time and updated
in O�logm log� n� amortized time over the next m updates�

��� Dynamic CTR�tree

Since a CTR�tree is derived from its corresponding FTR�tree� a dynamic CTR�tree is derived
from the corresponding dynamic FTR�tree by removing the representative tuple p of object
Oi from a node v if none of its siblings contains an observation of Oi� It is easy to show
that the storage cost of the dynamic CTR�tree is still O�m log n� and the query time is still
O�logm log� n� f logm��
Notice that Lemma � holds for CTR�trees as well� Therefore� updating an exiting tuple

in a CTR�tree takes O�logm log� n� time�
Now consider the process of adding a new tuple� If a node v splits into v� and v�� during

the insertion of the new time instance� we rebuild� as we did for the FTR�tree� the subtrees
rooted at v� and v�� completely� The amortized cost is O�logm log� n�� The only additional
detail we need to examine carefully is whether the set of tuples associated with the parent
u of v might change� Notice u does not have a representative tuple of object Oi if and only
if either �i� no observation of Oi was taken during the time period associated with u� or �ii�
the set of observations associated with the subtree rooted at u is the same as that associated
with the subtree rooted at u�s parent� These two conditions will not change as a result of
the node�split� and hence the tuples associated with u will not change�
Finally� we comment on the insertion of the new tuple p 	 �vj��i � tj��i � sj��i ���� oi�� As

we did in the case of dynamic FTR�trees� we traverse the path � from the root of T to
the leaf node corresponding to tj��i � At each node v� we �rst use Tkey�v� to identify the
representative tuple of Oi in S�v�� If no such tuple is found� i�e� no tuple corresponding
to Oi is stored in the subtree rooted at v� we simply insert the new tuple in Tkey�v� and
Tdom�v�� If there is such a tuple� say q 	 �vli� t

l
i� s

l
i���� oi�� we check whether the dominant

interval of p contains that of q and in the a�rmative replace q with p in both Tdom�v� and
Tkey�v�� and continue to visit the next node on �� Unlike the FTR�tree� when the tuple q is
replaced by p� and p and q belong to subtrees of di�erent children of v� we need to insert q
to the root of the subtree it belongs to� Hence� the process of inserting the new tuple takes
O�logm log� n� time�

Theorem �� Any temporal range query involving n objects with a total number of m ob�
servations can be answered in O�logm�log� n � f�� time using O�m log n� space� This data
structure can be constructed in O�m logm log� n� time and updated in O�logm log� n� amor�
tized time�

��

��� Dynamic LTR�tree

To make the LTR�tree dynamic� we replace the primary and secondary binary search trees
with weight�balanced trees of degree c� In either the primary tree or the secondary tree� a
node is thus associated with c� � partition lines� and a tuple is associated with a node if its
corresponding rectangle intersects at least one of its partition lines�
Let S�u� be the set of tuples associated with a primary tree node u� S�u� is partitioned

into ��c�� subsets� each containing the tuples whose corresponding rectangles intersect a
speci�c pair of vertical partition lines and is organized as a secondary tree Tg�h�u� with

 � g � h � c� Similarly the set of tuples associated with each such secondary tree node �
is indexed using ��c�� dynamic dominance trees� four of di�erent versions for each pair of
horizontal partition lines�
It is easy to see that the overall storage cost of this data structure is O�m logm�� the

query time is O�log�m� f�� and the preprocessing time is O�m log�m�� Following the same
arguments as in Section ���� and by using the properties of the weight balanced trees and the
techniques of global rebuilding� it is not di�cult to show that we can insert a new tuple in
O�log�m� time and delete an old tuple in O�log�m� time� both amortized� Thus updating
an LTR�tree takes O�log�m� time�

Theorem �� Any temporal range query involving n objects with a total number of m obser�
vations can be answered in O�log�m�f�� time using a O�m logm� space data structure� This
data structure can be constructed in O�m log�m� time and updated in O�log�m� amortized
time�

� Handling The General Temporal Queries

For the general problem� we assume that we have a prede�ned time hierarchy imposed
on our time line� say starting at a �xed time instance t� until tm�� 	 ��� such that all
queries involve one of the time intervals de�ned in this hierarchy� This is indeed the case
in many applications� In fact� the hierarchy �day�week�month�season�year� is widely
used for applications such as OLAPs� We are interested in queries that will identify objects
whose attributes fall within certain ranges at every time instance in one of the time intervals
de�ned by the hierarchy� As a speci�c application� consider a set of probes located in a
large number of geographic areas� each collecting a number of measures �say temperature�
humidity� snowfall� wind speed� pressure� etc�� and sending the information to a server � they
may arrive at di�erent times but will have a timestamp indicating when the information was
recorded� A typical query would be to determine the regions which� during the �rst week
of February �

�� the temperature was higher than �
�C and the snowfall smaller than �
inches during each day of that week�
Let us formally de�ne our time hierarchy as a tree T 	 �V�E�� Each node v of T

is associated with a time interval I�v� 	
ts� te� at a certain level of this hierarchy� An
internal node v has a set of children that correspond to the time intervals of a �ner gran�
ularity� Except for the root� which is associated with the time interval
t������ the time
interval associated with any other internal node v is I�v� 	 �u�children	v
I�u�� The leaves
correspond to time intervals of the �nest granularity in the hierarchy� For example� for the

��

�day�week�month�season�year� hierarchy� the root corresponds to the entire history of
the data set� Each child of the root represents a year and has four children� each correspond�
ing to a di�erent season of that year� etc� Let I�v� be the time interval associated with node
v� a query of type Q� is de�ned as follows�

Q�� Given two vectors a 	
a�� a�� � � � � ad� and b 	
b�� b�� � � � � bd�� and a node
v � V � determine the set Q of objects such that Oi � Q if and only if the
following two conditions are true�

� There exist at least one observation taken at time tji such that t
j
i � I�v��

� For every observation v
j

i such that t
j

i � I�v�� we have ak � vji�k � bk for
k 	 �� �� � � � � d�

We store at each node v a set S�v� of ��d � ���tuples� S�v� 	 f�minvi���max
v
i��� � � � �

minvi�d�max
v
i�d� oi�j�j� t

j
i � I�v�g� where minvi�l and max

v
i�l are the minimum and maximum

values of the lth attribute of Oi during the time interval I�v�� Note that if there is no
observation for Oi during the time interval I�v�� then there is no tuple in S�v� representing
Oi� To be able to tell which objects are represented in v� we maintain a red�black tree Tkey�v�
to index the tuples in S�v� on the keys oi�
By observation �� we can answer a query of type Q� by determining the ��d � ���tuples

at v which satisfy� maxvi�� � bl and min
v
i�� 	 al� for all l 	 �� �� � � � � d� Finding such tuples

in S�v� is equivalent to answering a ��d��dimensional dominance query� By Lemma �� there
exists a data structure Tdom�v� of size O�n log

�d�� n� such that the proper objects in S�v�
can be reported in O�log�d�� n�f�v�� time� The total number of tuples stored in T is O�m��
since each tuple is stored in a constant number of nodes� one at each level of the hierarchy
�the number of hierarchy levels is assumed to be constant independent of the number of
observations�� Let n�v� be the number of tuples stored in v� The overall size of the data
structure is

O

�X
v�V

n�v� log�d�� n�v� �m�

�
	 O

�
log�d�� n

X
v�V

n�v� �m�

�
	 O

�
m log�d�� n�m�

�
�

wherem� is the number of leaves in T � which is typically much smaller than m� The construc�
tion of this data structure is straightforward� We �rst use O�m� time to construct the set S�v�
for each node v� We then spend O�n�v� log n�v�� to build Tkey�v� and O�n�v� log�d�� n�v��
time to build Tdom�v�� The overall preprocessing time is O�m log

�d�� n�m���
When a new observation vmi��

i of object Oi is added� we �rst look for the leaf node u such
that tji is in its corresponding time interval� We distinguish between two cases as described
below�

Case �� A leaf node u containing tji already exists in our structure� We visit nodes on
the path from u to the root� For each such node v� we �rst look for the representative
tuple of Oi in S�v� by searching Tkey�v�� which takes O�log n�v�� time� If such a tuple
is found� we compare vmi��

i�k against minvi�k and max
v
i�k for each � � k � d� and update

the maximum or minimum value if necessary� If one of the maximum or minimum
values is updated� then the old ��d � ���tuple is removed from Tdom�v� and the new
tuple is inserted� Only O�log�d�� n� time is needed to perform this task�

��

Case �� No leaf node containing tji exists� We need to add a sequence of leaf nodes
to the right of the rightmost leaf of the existing tree� so that the time interval of last
node u added covers the time instance tmi��

i � and the new tuple �vmi��
i�� � � � � � vmi��

i�d � oi� is
inserted into the empty node u� If the newly added nodes are children of the rightmost
node v one level higher in the hierarchy� the trees Tkey�w� and Tdom�w� for each node
w on the path from v to the root are updated using vmi��

i as described in Case ��
Otherwise� new nodes at this level need to be added� We repeat the same process until
we reach the level just below the root� Since the root is associated with the entire
history of the data set� the process of adding new nodes is guaranteed to end at this
level� The complexity of adding the new observation in this case is O�log�d�� n� m���
where m� is the number of new leaf nodes added�

We thus have the following theorem�

Theorem �� Any temporal range query of type Q� involving n objects with a total number
of m observations� and involving a time hierarchy with m� prede�ned time intervals at the
lowest level� can be answered in O�log�d�� n � f� time using O�m log�d�� n � m�� space�
The preprocessing takes O�m log�d�� n � m�� time� Any new observation can be added in
O�log�d�� n � m�� amortized time� where m� is the number of new time intervals added
to the lowest level of the hierarchy�

� Adding Key Ranges to the Search

By increasing the storage by a factor of O�log n�� we can extend all the previous data
structures so that they can be used to answer queries that not only specify the time and
value ranges� but also the key ranges� That is� only a subset of the proper objects Oi� those
with keys between k� and k� satisfying the temporal range constraints will be reported� We
use a dynamic balanced binary tree to index the tuples according to their keys� Each node
of this tree is thus associated with a key range� and we attach one of the data structures
described in the previous sections� containing only tuples within this key range� The query
times are increased by a factor of O�log n��

References

�� P� K� Agarwal� L� Arge� and J� Erickson� Indexing moving points� In 	
th ACM
Symposium on Principles of Database Systems� pages ���!���� �

�

�� L� Arge and J� S� Vitter� Optimal dynamic interval management in external mem�
ory� In ��th Annual Symposium on Foundations of Computer Science� pages ��
!����
Burlington� Vermont� Oct� �����

�� V� P� Chakka� A� Everspaugh� and J� M� Patel� Indexing large trajectory data sets with
SETI� In First Biennial Conference on Innovative Data Systems Research� �

��

�� B� Chazelle� Filtering search� A new approach to query�answering� SIAM Journal on
Computing� �������
�!���� Aug� �����

��

�� B� Chazelle� Lower bounds for orthogonal range search I� The reporting case� Journal
of the ACM� �������

!���� ���
�

�� B� Chazelle and H� Edelsbrunner� Linear space data structures for two types of range
search� Discrete Comput� Geom�� �����!���� �����

�� Cormen� Leiserson� and Rivest� Introduction to Algorithms� MIT Press� ���
�

�� J� R� Driscoll� N� Sarnak� D� Sleattor� and R� E� Tarjan� Make data structures persistent�
J� of Compu� and Syst� Sci�� �����!���� �����

�� H� Edelsbrunner� A new approach to rectangle intersections� part I� Int� J� Computer
Mathematics� ����
�!���� �����

�
� P� Gupta� R� Janardan� and M� Smid� Further results on generalized intersection search�
ing problems� counting� reporting� and dynamization� Journal of Algorithms� ������!
���� �����

��� R� Janardan and M� Lopez� Generalized intersection searching problems� International
Journal of Computational Geometry
 Applications� �������!��� �����

��� K� V� R� Kanth and A� K� Singh� Optimal dynamic range searching in non�replicating
index structures� In Proceedings of the �th International Conference on Database Theory�
pages ���!���� Jerusalem� Israel� Jan� �����

��� G� Kollios� D� Gunopulos� and V� J� Tsotras� On indexing mobile objects� In Proceed�
ings of the Eighteenth ACM SIGACT�SIGMOD�SIGART Symposium on Principles of
Database Systems� pages ���!���� �����

��� S� Lanka and E� Mays� Fully persistent B��trees� In Proceedings of the ACM SIGMOD
International Conference on Management of Data� pages ���!���� �����

��� C� Makris and A� K� Tsakalidis� Algorithms for three�dimensional dominance searching
in linear space� Information Processing Letters� ���������!���� �����

��� Y� Manolopoulos and G� Kapetanakis� Overlapping B��trees for temporal data� In
Proceedings of the �th Jerusalem Conference on Information Technology� pages ���!
���� ���
�

��� E� M� McCreight� Priority search trees� SIAM Journal on Computing� ���������!����
May �����

��� M� A� Nascimento and J� R� O� Silva� Towards historical R�trees� In Proceedings of the
ACM Symposium on Applied Computing� pages ���!��
� Feb� �����

��� M� H� Overmars� The design of dynamic data structures� Springer�Verlag� LNCS ����
�����

�

�
� D� Pfoser� C� S� Jensen� and Y� Theodoridis� Novel approaches in query processing for
moving object trajectories� In Proceedings of ��th International Conference on Very
Large Databases� pages ���!�
�� Sept� �

�

��� S� Saltenis� C� S� Jensen� S� T� Leutenegger� and M� A� Lopez� Indexing the positions of
continuously moving objects� In Proceedings of the ���� ACM SIGMOD International
Conference on Management of Data� pages ���!���� �

�

��� B� Salzberg and V� J� Tsotras� Comparison of access methods for time�evolving data�
ACM Computing Surveys� ���������!���� �����

��� Q� Shi and J� JaJa� A new framework for addressing temporal range queries and some
preliminary results� Technical Report CS�TR������ Institute of Advanced Computer
Studies �UMIACS�� University of Maryland� �

��

��� Y� Tao and D� Papadias� E�cient historical R�trees� In Proceedings of the 	�th Inter�
national Conference on Scienti�c and Statistical Database Management� pages ���!����
�

��

��� T� Tzouramanis� Y� Manolopoulos� and M� Vassilakopoulos� Overlapping Linear
Quadtrees� A spatio�temporal access method� In Proceedings of the �th ACM Sympo�
sium on Advances in Geographic Information Systems �ACM�GIS�� pages �!�� Bethesda�
MD� �����

��� P� J� Varman and R� M� Verma� An e�cient multiversion access structure� IEEE
Transactions on Knowledge and Data Engineering� ��������!�
�� �����

��� J� Vuillemin� A unifying look at data structures� Communications of the ACM�
���������!���� ���
�

��

