Ans(1-1)

$\mathrm{P}\left(C_{0}\right)=0.39, \mathrm{P}\left(C_{1}\right)=0.33$ and $\mathrm{P}\left(C_{2}\right)=0.28$ denote the probability of the cluster 0 , cluster 1 and cluster 2 respectively. X is the value of petal length and those conditional probabilities generated by EM algorithm are described as follows:
$P\left\{X \mid C_{0}\right\}=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \frac{\left(x-\mu_{0}\right)^{2}}{2 \sigma_{0}^{2}}, \mu_{0}$ is 4.4513 and σ_{0} is 0.6016 (Red).
$P\left\{X \mid C_{1}\right\}=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \exp \frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}, \mu_{1}$ is 1.464 and σ_{1} is 0.1717 (Green).
$P\left\{X \mid C_{2}\right\}=\frac{1}{\sqrt{2 \pi} \sigma_{2}} \exp \frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}{ }^{2}}, \mu_{2}$ is 5.5353 and σ_{2} is 0.6527 (Blue).

Ans(1-1)

We want to know:

$$
\begin{aligned}
& P\left\{C_{0} \mid X=2.0\right\}, P\left\{C_{1} \mid X=2.0\right\}, P\left\{C_{2} \mid X=2.0\right\} \\
& P\left\{C_{0} \mid X=5.0\right\}, P\left\{C_{1} \mid X=5.0\right\}, P\left\{C_{2} \mid X=5.0\right\} \\
& P\left\{C_{0} \mid X=6.0\right\}, P\left\{C_{1} \mid X=6.0\right\}, P\left\{C_{2} \mid X=6.0\right\}
\end{aligned}
$$

Using Bayes' rule,

$$
\begin{aligned}
& P\left\{C_{0} \mid X=2.0\right\}=\frac{P\left\{X=2.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}}{P\{X=2.0\}} \\
& \begin{aligned}
P\{X=2.0\} & =P\left\{X=2.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}+P\left\{X=2.0 \mid C_{1}\right\} \cdot P\left\{C_{1}\right\}+P\left\{X=2.0 \mid C_{2}\right\} \cdot P\left\{C_{2}\right\} \\
& =1.70276 \times 10^{-6} \times 0.39+1.62513 \times 10^{-4} \times 0.33+2.71478 \times 10^{-9} \times 0.28 \\
& =5.429 \times 10^{-5}
\end{aligned} \\
& \begin{aligned}
P\left\{C_{0} \mid X=2.0\right\} & =\frac{1.70276 \times 10^{-6} \times 0.39}{5.429 \times 10^{-5}} \simeq 1.22 \%
\end{aligned} \\
& P\left\{C_{1} \mid X=2.0\right\}=\frac{1.62513 \times 10^{-4} \times 0.33}{5.429 \times 10^{-5}} \simeq 98.78 \%
\end{aligned} \begin{aligned}
& P\left\{C_{2} \mid X=2.0\right\}=\frac{2.71478 \times 10^{-9} \times 0.28}{5.429 \times 10^{-5}} \simeq 0 \%
\end{aligned}
$$

So, $\mathrm{X}=2.0$ belongs to the cluster 1 with the highest probability.

Ans(1-1)

$$
\begin{aligned}
& P\left\{C_{0} \mid X=5.0\right\}=\frac{P\left\{X=5.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}}{P\{X=5.0\}} \\
& P\{X=5.0\}=P\left\{X=5.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}+P\left\{X=5.0 \mid C_{1}\right\} \cdot P\left\{C_{1}\right\}+P\left\{X=5.0 \mid C_{2}\right\} \cdot P\left\{C_{2}\right\} \\
& =4.34167 \times 10^{-3} \times 0.39+0.0 \times 0.33+4.39394 \times 10^{-3} \times 0.28 \\
& =2.9235545 \times 10^{-3} \\
& P\left\{C_{0} \mid X=5.0\right\}=\frac{4.34167 \times 10^{-3} \times 0.39}{2.9235545 \times 10^{-3}} \simeq 57.91 \% \\
& P\left\{C_{1} \mid X=5.0\right\}=\frac{0 \times 0.33}{2.9235545 \times 10^{-3}} \simeq 0.00 \% \\
& P\left\{C_{2} \mid X=5.0\right\}=\frac{4.39394 \times 10^{-3} \times 0.28}{2.9235545 \times 10^{-3}} \simeq 42.09 \% \\
& P\left\{C_{0} \mid X=6.0\right\}=\frac{P\left\{X=6.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}}{P\{X=6.0\}} \\
& P\{X=6.0\}=P\left\{X=6.0 \mid C_{0}\right\} \cdot P\left\{C_{0}\right\}+P\left\{X=6.0 \mid C_{1}\right\} \cdot P\left\{C_{1}\right\}+P\left\{X=6.0 \mid C_{2}\right\} \cdot P\left\{C_{2}\right\} \\
& =2.36201 \times 10^{-4} \times 0.39+0.0 \times 0.33+4.71783 \times 10^{-3} \times 0.28 \\
& =1.413111079 \times 10^{-3} \\
& P\left\{C_{0} \mid X=6.0\right\}=\frac{2.36201 \times 10^{-4} \times 0.39}{1.413111079 \times 10^{-3}} \simeq 6.52 \% \\
& P\left\{C_{1} \mid X=6.0\right\}=\frac{0 \times 0.33}{1.413111079 \times 10^{-3}} \simeq 0.00 \% \\
& P\left\{C_{2} \mid X=6.0\right\}=\frac{4.71783 \times 10^{-3} \times 0.28}{1.413111079 \times 10^{-3}} \simeq 93.48 \%
\end{aligned}
$$

Q1-1
 Q1-2

Ans(1-2)

petal length

cluster 2
 cluster 0

cluster 1
sepal length

Table: Simple K Means Results

Attribute	Cluster 0	Cluster 1	Cluster 2
sepal length	5.9086	5.0057	6.8846
petal length	4.4759	1.5623	5.6769

Q1-2

Ans(1-2)

$\|(I$, cluster 0$) \|=\sqrt{(5.45-5.9086)^{2}+(5.00-4.4759)^{2}}=0.6943$
$\|(I$, cluster 1$) \|=\sqrt{(5.45-5.0057)^{2}+(5.00-1.5623)^{2}}=3.468$
$\|(I$, cluster 2$) \|=\sqrt{(5.45-6.8846)^{2}+(5.00-5.6769)^{2}}=1.5834$
Since $\|(I$, cluster 0$) \|$ has the smallest distance from cluster 0 , this instance is clustered to the cluster 0 .

