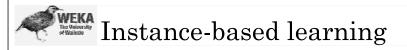



# Data Mining

Practical Machine Learning Tools and Techniques


Slides for Sections 4.7 and 6.4 Instance Based Learning (Skip kD-trees, Ball trees, generalized exemplars and generalized distance functions)



 Different attributes are measured on different scales ⇒ need to be *normalized*:

 $a_i = \frac{v_i - \min v_i}{\max v_i - \min v_i}$ 

- $\boldsymbol{v}_i \text{:}$  the actual value of attribute i
- Nominal attributes: distance either 0 or 1  $\,$
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)



- General strategy that can be used for classification or regression.
- Determine "closest" member of training data distance function needed
- Most instance-based schemes use *Euclidean distance*:

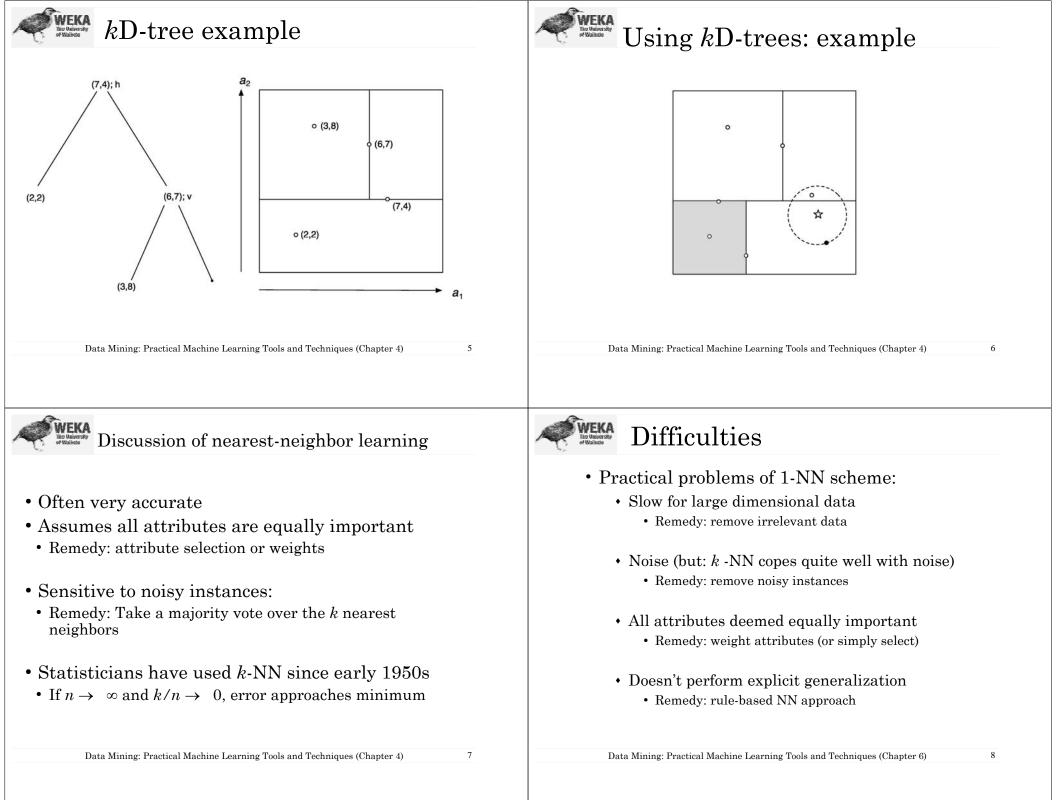
 $\sqrt{(a_1^{(1)}-a_1^{(2)})^2+(a_2^{(1)}-a_2^{(2)})^2+\dots(a_k^{(1)}-a_k^{(2)})^2}$ 

- $\mathbf{a}^{\scriptscriptstyle(1)}$  and  $\mathbf{a}^{\scriptscriptstyle(2)}$ : two instances with k attributes
- Taking the square root is not required when comparing distances

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



3


#### Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbour: linear scan of the data
  - Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
- More elaborate methods exist:

#### kD-trees and ball trees

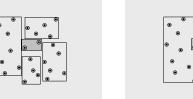
• Skip kD-trees and ball trees in book

2





#### Speed up, combat noise


- IB3: Instance-Based Learner Version 3
  - Track the performance of each training example and discard instances that don't perform well
  - Compute confidence intervals for
    - 1. Each instance's success rate
    - 2. Default accuracy of its class
  - Accept/reject instances
    - Accept if lower limit of 1 exceeds upper limit of 2
    - Reject if upper limit of 1 is below lower limit of 2

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



# Rectangular generalizations

Organize instances into hyper-rectangles



- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than "normal" rules.)
- Nested rectangles are rules with exceptions



# Weight attributes

- Some attributes are less important than others dynamically learn importance and adjust weights.
- IB4: weight each attribute (weights can be class-specific)
- Weighted Euclidean distance:

 $\sqrt{(w_1^2(x_1-y_1)^2+...+w_n^2(x_n-y_n)^2)}$ 

- Update weights based on nearest neighbor
  - Class correct: increase weight
  - Class incorrect: decrease weight
  - Amount of change for i th attribute depends on  $| \, x_i \text{-} \, \mathbf{y}_i \, |$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 6)



11

### **K-Nearest Neighbors**

- Determine k-nearest neighbors.
- Given the k neighbors, weigh each closest neighbor according to its distance from query. Take weighted average for regression.
- For classification, choose the label that achieves the maximum weight among the k neighbors.

10