

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Section 5.7

Counting the cost

- In practice, different types of classification errors often incur different costs
- Examples:
 - Loan decisions
 - Oil-slick detection
 - Fault diagnosis
 - Promotional mailing

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

2

Counting the cost

• The confusion matrix:

		Predicted class			
		Yes	No		
Actual class	al class Yes	True positive	False negative		
	No	False positive	True negative		

There are many other types of cost!

 \bullet E.g.: cost of collecting training data

3

Aside: the kappa statistic

• Two confusion matrices for a 3-class problem: actual predictor (left) vs. random predictor (right)

		Predicted class							Predicted class		
		a	b	c	total			а	b	c	total
	а	88	10	2	100		а	60	30	10	100
Actual class	b	14	40	6	60	Actua class	ıl b	36	18	6	60
	c	18	10	12	40		c	24	12	4	40
	total	120	60	20			total	120	60	20	

- Number of successes: sum of entries in diagonal (D)
- Kappa statistic: $D_{observed}^{D_{observed}-D_{randon}}$

measures relative improvement over random predictor

Classification with costs

• Two cost matrices:

	Predicted class					Predicted class		
		yes	no			а	b	c
Actual class	yes	0	1		а	0	1	1
	no	1	0	Actual class	b	1	0	1
					с	1	1	0

- Success rate is replaced by average cost per prediction
 - Cost is given by appropriate entry in the cost matrix

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

Cost-sensitive classification

- Can take costs into account when making predictions
 - Basic idea: only predict high-cost class when very confident about prediction
- Given: predicted class probabilities
 - Normally we just predict the most likely class
 - Here, we should make the prediction that minimizes the expected cost
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Choose column (class) that minimizes expected cost

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

6

8

Cost-sensitive learning

- So far we haven't taken costs into account at training time
- Most learning schemes do not perform costsensitive learning
- They generate the same classifier no matter what costs are assigned to the different classes
- Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
- Weighting of instances according to costs
- Some schemes can take costs into account by varying a parameter, e.g. naïve Bayes

Lift charts

- In practice, costs are rarely known
- Decisions are usually made by comparing possible scenarios
- Example: promotional mailout to 1,000,000 households
 - Mail to all; 0.1% respond (1000)
 - Data mining tool identifies subset of 100,000 most promising, 0.4% of these respond (400) 40% of responses for 10% of cost may pay off
 - Identify subset of 400,000 most promising, 0.2% respond (800)
- A lift chart allows a visual comparison

Generating a lift chart

 Sort instances according to predicted probability of being positive:

	Predicted probability	Actual class
1	0.95	Yes
2	0.93	Yes
3	0.93	No
4	0.88	Yes

x axis is sample size
 y axis is number of true positives

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

9

11

A hypothetical lift chart

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

10

ROC curves

- ROC curves are similar to lift charts
 - Stands for "receiver operating characteristic"
 - Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel
- Differences to lift chart:
 - y axis shows percentage of true positives in sample rather than absolute number
 - *x* axis shows percentage of false positives in sample *rather than sample size*

A sample ROC curve

- · Jagged curve—one set of test data
- Smooth curve—use cross-validation

Cross-validation and ROC curves

- Simple method of getting a ROC curve using cross-validation:
 - Collect probabilities for instances in test folds
 - Sort instances according to probabilities
- This method is implemented in WEKA
- However, this is just one possibility
 - Another possibility is to generate an ROC curve for each fold and average them

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

13

ROC curves for two schemes

- · For a small, focused sample, use method A
- For a larger one, use method B
- In between, choose between A and B with appropriate probabilities

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

14

The convex hull

- Given two learning schemes we can achieve any point on the convex hull!
- TP and FP rates for scheme 1: t_1 and f_2
- TP and FP rates for scheme 2: t_2 and f_2
- If scheme 1 is used to predict $100 \times q$ % of the cases and scheme 2 for the rest, then
- TP rate for combined scheme:

$$q \times t_1 + (1-q) \times t_2$$

• FP rate for combined scheme: $q \times f_1 + (1-q) \times f_2$

More measures...

- Percentage of retrieved documents that are relevant: precision=TP/(TP+FP)
- Percentage of relevant documents that are returned: recall =TP/(TP+FN)
- Precision/recall curves have hyperbolic shape
- Summary measures: average precision at 20%, 50% and 80% recall (*three-point average recall*)
- F-measure=(2 × recall × precision)/(recall+precision)
- $sensitivity \times specificity = (TP / (TP + FN)) \times (TN / (FP + TN))$
- Area under the ROC curve (*AUC*): probability that randomly chosen positive instance is ranked above randomly chosen negative one

Summary of some measures

	Domain	Plot	Explanation
Lift chart	Marketing	ТР	ТР
Lift Griant	ivial Ketting	Subset size	(TP+FP)/ (TP+FP+TN+FN)
ROC curve	Communications	TP rate FP rate	TP/(TP+FN) FP/(FP+TN)
Recall- precision curve	Information retrieval	Recall Precision	TP/(TP+FN) TP/(TP+FP)

Data Mining	Practical Machin	e Learning Tool	s and Technique	(Chanter 5)
Data Milling	. I factical maciiii	ie Learning 1001	s and reciningue	s (Onapter o)

WEKA The University Cost curves

- Cost curves plot expected costs directly
- Example for case with uniform costs (i.e. error):

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

18

Cost curves: example with costs

Probability cost function $p_c[+] = \frac{p[+]C[+]-]}{p[+]C[+]-]+p[-]C[-]+]}$ Normalized expected cost=fn× $p_c[+]$ +fp× $(1-p_c[+])$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5)

17