

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 4 of *Data Mining* by I. H. Witten and E. Frank Decision Trees

3

- Strategy: top down Recursive *divide-and-conquer* fashion
 - First: select attribute for root node Create branch for each possible attribute value
 - Then: split instances into subsets One for each branch extending from the node
 - Finally: repeat recursively for each branch, using only instances that reach the branch
- Stop if all instances have the same class

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Criterion for attribute selection

- Which is the best attribute?
 - Want to get the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Strategy: choose attribute that gives greatest information gain

- Measure information in bits
 - Given a probability distribution, the info required to predict an event is the distribution's *entropy*
 - Entropy gives the information required in bits (can involve fractions of bits!)
- Formula for computing the entropy: entropy $(p_1 p_2 ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Example: attribute *Outlook*

- Outlook = Sunny : info([2,3])=entropy(2/5,3/5)=-2/5log(2/5)-3/5log(3/5)=0.971 bits
- Outlook = Overcast: info([4,0])=entropy(1,0)=-1log(1)-0log(0)=0 bits is normally
- Outlook = Rainy : info([2,3])=entropy(3/5,2/5)=-3/5log(3/5)-2/5log(2/5)=0.971 bits
- Expected information for attribute: info([3,2],[4,0],[3,2])=(5/14)\times0.971+(4/14)\times0+(5/14)\times0.971=0.693\,bits

5

7

Computing information gain

- Information gain: information before splitting information after splitting gain(*Outlook*) = info([9,5]) – info([2,3],[4,0],[3,2]) = 0.940 – 0.693 = 0.247 bits
- Information gain for attributes from weather data: gain(Outlook) = 0.247 bits

gain(Outlook)= 0.247 bitsgain(Temperature)= 0.029 bitsgain(Humidity)= 0.152 bitsgain(Windy)= 0.048 bits

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 - \Rightarrow Information gain is biased towards choosing attributes with a large number of values
 - \Rightarrow This may result in *overfitting* (selection of an attribute that is non-optimal for prediction)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Another problem: fragmentation

- Entropy of split:
 - $info(ID \ code) = info([0,1]) + info([0,1]) + ... + info([0,1]) = 0 \ bits$
 - \Rightarrow Information gain is maximal for ID code (namely 0.940 bits)

Weather data with ID code

ID code	Outlook	Temp.	Humidity	Windy	Play
A	Sunny	Hot	High	False	No
В	Sunny	Hot	High	True	No
С	Overcast	Hot	High	False	Yes
D	Rainy	Mild	High	False	Yes
E	Rainy	Cool	Normal	False	Yes
F	Rainy	Cool	Normal	True	No
G	Overcast	Cool	Normal	True	Yes
Н	Sunny	Mild	High	False	No
1	Sunny	Cool	Normal	False	Yes
J	Rainy	Mild	Normal	False	Yes
К	Sunny	Mild	Normal	True	Yes
L	Overcast	Mild	High	True	Yes
М	Overcast	Hot	Normal	False	Yes
Ν	Rainy	Mild	High	True	No

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Tree stump for *ID code* attribute

13

15

Gain ratio

- *Gain ratio*: a modification of the information gain that reduces its bias
- Gain ratio takes number and size of branches into account when choosing an attribute
 - It corrects the information gain by taking the *intrinsic information* of a split into account
- Intrinsic information: entropy of distribution of instances into branches (i.e. how much info do we need to tell which branch an instance belongs to)

Computing the gain ratio

- Example: intrinsic information for ID code $info([1,1,\ldots,1]) = 14 \times (-1/14 \times log(1/14)) = 3.807 \, bits$
- Value of attribute decreases as intrinsic information gets larger
- Definition of gain ratio:

 $gain_ratio(attribute) = {}^{gain(attribute)}_{intrinsic_info(attribute)}$

• Example:

 $gain_ratio(ID \ code) = \frac{0.940 \ bits}{3.807 \ bits} = 0.246$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.557
Gain ratio: 0.247/1.577	0.157	Gain ratio: 0.029/1.557	0.019
Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WE The Unit of Walk

More on the gain ratio

- "Outlook" still comes out top
- However: "ID code" has greater gain ratio
 - + Standard fix: ad hoc test to prevent splitting on that type of attribute
- Problem with gain ratio: it may overcompensate
 - May choose an attribute just because its intrinsic information is very low
 - Standard fix: only consider attributes with greater than average information gain

17

19

^A Discussion

- Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
 - Gain ratio just one modification of this basic algorithm
 - $\Rightarrow~$ C4.5: deals with numeric attributes, missing values, noisy data
- Similar approach: CART
- There are many other attribute selection criteria! (But little difference in accuracy of result)

Selecting a test

- Goal: maximize accuracy
 - *t* total number of instances covered by rule
 - *p* positive examples of the class covered by rule
 - t p number of errors made by rule
 - \Rightarrow Select test that maximizes the ratio p/t
- We are finished when p/t = 1 or the set of instances can't be split any further

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Modified rule and resulting data

• Rule with best test added:

If astigmatism = yes then recommendation = hard

• Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Муоре	Yes	Reduced	None
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Муоре	Yes	Reduced	None
Pre-presbyopic	Муоре	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	Yes	Reduced	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None
	•			
Data Mining: Practical Machina Learning Tools and Techniques (Chanter 4)				anter 4) 27

Example: contact lens data

- If ?
- Rule we seek: then recommendation = hard

• Possible tests:

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

NEKA

25

Further refinement

• Current state:

If astigmatism = yes and ? then recommendation = hard

• Possible tests:

Age = Young	2/4
Age = Pre-presbyopic	
Age = Presbyopic	1/4
Spectacle prescription = Myope	3/6
Spectacle prescription = Hypermetrope	1/6
Tear production rate = Reduced	0/6
Tear production rate = Normal	4/6

28

Modified rule and resulting data

• Rule with best test added:

If astigmatism = yes
 and tear production rate = normal
 then recommendation = hard

• Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended lenses
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

^A The result

- Final rule: If astigmatism = yes and tear production rate = normal and spectacle prescription = myope then recommendation = hard
- Second rule for recommending "hard lenses": (built from instances not covered by first rule)

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

- These two rules cover all "hard lenses":
 - Process is repeated with other two classes

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

31

29

• Current state:

If astigmatism = yes
 and tear production rate = normal
 and ?
 then recommendation = hard

• Possible tests:

Age = Young	2/2
Age = Pre-presbyopic	1/2
Age = Presbyopic	1/2
Spectacle prescription = Myope	3/3
Spectacle prescription = Hypermetrope	1/3

• Tie between the first and the fourth test

• We choose the one with greater coverage

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

For each class C

Initialize E to the instance set

While E contains instances in class C

Create a rule R with an empty left-hand side that predicts class C $% \left({{\boldsymbol{x}_{i}}} \right)$

Until R is perfect (or there are no more attributes to use) do

For each attribute A not mentioned in R, and each value $\boldsymbol{v},$

Consider adding the condition A = v to the left-hand side of R Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the largest p) Add A = v to R

Remove the instances covered by R from E

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

32

Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn't matter because all rules predict the same class
- Outer loop considers all classes separately
 - No order dependence implied
- Problems: overlapping rules, default rule required

33

Separate and conquer

- Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:
 - First, identify a useful rule
 - Then, separate out all the instances it covers
 - Finally, "conquer" the remaining instances
- Difference to divide-and-conquer methods:
 - Subset covered by rule doesn't need to be explored any further

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)