

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Section 4.2 Introduction to Statistical Techniques and Bayesian Networks

- Conditional Probability P[A | B] can be approximated by the fraction of cases when B is true for which A is also true (discrete case)
 P[A | B]=P[AB]/P[B]
- Events A and B are independent if P[A | B]=P[A] or P[AB]=P[A]P[B] assuming P[B] is non-zero.
- Distribution discrete case
 - Probability mass function: X = P[X=x]
 - Joint distribution P[X=x,Y=y, ...,Z=z] with multiple random variables X, Y, ..., Z = probability of event {X=x, Y=y, ..., Z=z}.

- Random event E is an event with a degree of uncertainty. Probability of E mathematical concept
 can be approximated with fraction of times when E occurs – always between 0 and 1.
- Sample space = set of all elementary events Probability of one of these events occurring is equal to 1. Event is a subset of the sample space.
- Probability of the union of disjoint events is equal to the sum of their probabilities.
- Random variable X function on sample space; can either be discrete or continuous.

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

-

3

Statistical modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption may not be correct!
- But ... this scheme works well in practice

Probabilities for weather data

Οι	ıtlook		Tempe	rature		Hu	ımidity		V	/indy		Pla	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5			Outloc	nk Temn	Hur	midity	Windy	Play

4	Outlook	Temp	Humidity	Windy	Play
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	High	False	Yes
	Rainy	Cool	Normal	False	Yes
	Rainy	Cool	Normal	True	No
	Overcast	Cool	Normal	True	Yes
	Sunny	Mild	High	False	No
	Sunny	Cool	Normal	False	Yes
	Rainy	Mild	Normal	False	Yes
	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
31	Rainy	Mild	High	True	No

Data Mining: Practical Machine Learning Tools at Rainy | Mild | High

Probabilities for weather data

Ou	Outlook		Tempe	rature		Hu	midity		V	Vindy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

· A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

,

Bayes's rule

•Probability of event *H* given evidence *E*:

$$Pr[H|E] = \frac{Pr[E|H]Pr[H]}{Pr[E]}$$

- •A priori probability of H: Pr[H]
 - Probability of event before evidence is seen
- A posteriori probability of H: Pr[H|E]
 - Probability of event after evidence is seen

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
 - Evidence E = instance
 - Event H =class value for instance
- Naïve assumption: evidence splits into parts (i.e. attributes) that are *independent*

$$Pr[H|E] = \frac{Pr[E_1|H]Pr[E_2|H]...Pr[E_n|H]Pr[H]}{Pr[E]}$$

Weather data example

I	Evidence E	Play	Windy	Humidity	Temp.	Outlook
I	Estaence E	?	True	High	Cool	Sunny

Probability of class "yes"

$$Pr[yes|E] = Pr[Outlook = Sunny|yes]$$

$$\times Pr[Temperature = Cool|yes]$$

 $\times Pr[Humidity = High|yes]$

$$\times Pr[Windy = True|yes]$$

$$\frac{\times \frac{Pr[yes]}{Pr[E]}}{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\frac{9}{Pr[E]}}$$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA Tier Unifora sity of Wallesto

The "zero-frequency problem"

 What if an attribute value doesn't occur with every class value?

(e.g. "Humidity = high" for class "yes")

- Probability will be zero! Pr[Humidity=High|yes]=0
- A posteriori probability will also be zero! Pr[yes|E]=0 (No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

10

12

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute *outlook* for class *yes*

$$\frac{2+\mu/3}{9+\mu}$$

$$\frac{4 + \mu/3}{9 + \mu}$$

$$\frac{3+\mu/3}{9+\mu}$$

Sunny

Overcast

Rainy

• Weights don't need to be equal (but they must sum to 1)

$$\frac{2 + \mu p_1}{9 + \mu}$$

$$\frac{4+\mu p_2}{9+\mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

11

WEKA The University of Walkello

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$

Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$

P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%

P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

Numeric attributes

- Usual assumption: attributes have a *normal* or *Gaussian* probability distribution (given the class)
- The *probability density function* for the normal distribution is defined by two parameters:
- Sample mean $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Standard deviation σ $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \mu)^2}$
- Then the density function f(x) is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

13

Statistics for weather data

Outlook		Temperature		Humidity		Windy			Play		
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65,71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72,80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	$\mu = 73$	$\mu = 75$	μ =79	μ =86	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	σ =6.2	σ =7.9	$\sigma = 10.2$	σ =9.7	True	3/9	3/5	14	14
Rainy	3/9	2/5									

• Example density value:

$$f(temperature=66|yes)=\frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2\cdot6.2^2}}=0.0340$$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

1/1

Classifying a new day

• A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Likelihood of "yes" = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$

Likelihood of "no" = $3/5 \times 0.0221 \times 0.0381 \times 3/5 \times 5/14 = 0.000108$

P("yes") = 0.000036 / (0.000036 + 0.000108) = 25%

P("no") = 0.000108 / (0.000036 + 0.000108) = 75%

 Missing values during training are not included in calculation of mean and standard deviation

Probability densities

 Relationship between probability and density:

$$Pr[c-\frac{\epsilon}{2} < x < c + \frac{\epsilon}{2}] \approx \epsilon \times f(c)$$

- But: this doesn't change calculation of a posteriori probabilities because ε cancels out
- Exact relationship:

$$Pr[a \le x \le b] = \int_a^b f(t) dt$$

- Version of naïve Bayes used for document classification using *bag of words* model
- n_1, n_2, \ldots , n_k : number of times word i occurs in document
- P_{I} , P_{2} , ..., P_{k} : probability of obtaining word i when sampling from documents in class H
- Probability of observing document *E* given class *H* (based on *multinomial distribution*):

$$Pr[E|H] \approx N! \times \prod_{i=1}^{k} \frac{P_i^{n_i}}{n_i!}$$

• Ignores probability of generating a document of the right length (prob. assumed constant for each class)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

17

- Suppose dictionary has two words, yellow and blue
- Suppose $Pr[yellow \mid H] = 75\%$ and $Pr[blue \mid H] = 25\%$
- Suppose *E* is the document "blue yellow blue"
- Probability of observing document:

$$Pr[\{\text{blue yellow blue}\}|H] \approx 3! \times \frac{0.75^1}{1!} \times \frac{0.25^2}{2!} = \frac{9}{64} \approx 0.14$$

Suppose there is another class H that has $\Pr[yellow \mid H'] = 10\%$ and $\Pr[yellow \mid H'] = 90\%$: $\Pr[\{\text{blue yellow blue}\}|H'] \approx 3! \times \frac{0.1^1}{1!} \times \frac{0.9^2}{2!} = 0.24$

- Need to take prior probability of class into account to make final classification
- · Factorials don't actually need to be computed
- Underflows can be prevented by using logarithms

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

18

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ kernel density estimators)