Data Mining

Practical Machine Learning Tools and Techniques
Slides for Section 4.2
Introduction to Statistical Techniques and Bayesian Networks

- Random event E is an event with a degree of uncertainty. Probability of E mathematical concept \sim can be approximated with fraction of times when E occurs - always between 0 and 1.
- Sample space $=$ set of all elementary events Probability of one of these events occurring is equal to 1 . Event is a subset of the sample space.
- Probability of the union of disjoint events is equal to the sum of their probabilities.
- Random variable X - function on sample space; can either be discrete or continuous.

WEKA A Little Probability - 2

- Conditional Probability - $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]$ can be approximated by the fraction of cases when B is true for which A is also true (discrete case)

$$
\mathrm{P}[\mathrm{~A} \mid \mathrm{B}]=\mathrm{P}[\mathrm{AB}] / \mathrm{P}[\mathrm{~B}]
$$

- Events A and B are independent if $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]=\mathrm{P}[\mathrm{A}]$ or $P[A B]=P[A] P[B]$ assuming $P[B]$ is non-zero.
- Distribution - discrete case
- Probability mass function: $\mathrm{X}=\mathrm{P}[\mathrm{X}=\mathrm{x}]$
- Joint distribution $\mathrm{P}[\mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{y}, \ldots, \mathrm{Z}=\mathrm{z}]$ with multiple random variables $\mathrm{X}, \mathrm{Y}, \ldots, \mathrm{Z}=$ probability of event $\{\mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{y}, \ldots, \mathrm{Z}=\mathrm{z}\}$.

- WEKA Statistical modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
- equally important
- statistically independent (given the class value)
- I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption may not be correct!
- But ... this scheme works well in practice

Probabilities for weather data

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No	Yes	No									
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	$2 / 5$	High	3/9	4/5	False	6/9	$2 / 5$	$9 /$	5/
Overcast	4/9	0/5	Mild	4/9	$2 / 5$	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$

Likelihood of the two classes

$$
\text { For "yes" }=2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0053
$$

$$
\text { For "no" }=3 / 5 \times 1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0206
$$

Conversion into a probability by normalization:

$$
P(" y e s ")=0.0053 /(0.0053+0.0206)=0.205
$$

$$
P(" n o ")=0.0206 /(0.0053+0.0206)=0.795
$$

Bayes's rule

-Probability of event H given evidence E :

$$
\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}[E \mid H] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}
$$

-A priori probability of H :

- Probability of event before evidence is seen
- A posteriori probability of $H: \quad \operatorname{Pr}[H \mid E]$
- Probability of event after evidence is seen

WEKA

Naïve Bayes for classification

- Classification learning: what's the probability of the class given an instance?
- Evidence $E=$ instance
- Event $H=$ class value for instance
- Naïve assumption: evidence splits into parts (i.e. attributes) that are independent
$\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}\left[E_{1} \mid H\right] \operatorname{Pr}\left[E_{2} \mid H\right] \ldots \operatorname{Pr}\left[E_{n} \mid H\right] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}$

The "zero-frequency problem"

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$\operatorname{Pr}[$ yes $\mid E]=\operatorname{Pr}[$ Outlook $=$ Sunny \mid yes $]$

$$
\begin{aligned}
& \times \operatorname{Pr}[\text { Temperature }=\text { Cool } \mid y e s] \\
& \text { Probability of } \quad \times \operatorname{Pr}[\text { Humidity }=\text { High } \mid y e s] \\
& \text { class "yes" } \quad \times \operatorname{Pr}[\text { Windy }=\text { True } \mid \text { yes }] \\
& \times \frac{\operatorname{Pr}[\text { yes }]}{\operatorname{Pr}[E]} \\
& =\frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\operatorname{Pr}[E]}
\end{aligned}
$$

- What if an attribute value doesn't occur with every class value?
(e.g. "Humidity = high" for class "yes")
- Probability will be zero! $\operatorname{Pr}[$ Humidity $=$ High \mid yes $]=0$
- A posteriori probability will also be zero! $\operatorname{Pr}[y e s \mid E]=0$ (No matter how likely the other values are!)
- Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

WEKA Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class yes

$$
\begin{array}{lll}
\frac{2+\mu / 3}{9+\mu} & \frac{4+\mu / 3}{9+\mu} & \frac{3+\mu / 3}{9+\mu} \\
\text { Sunny } & \text { Overcast } & \text { Rainy }
\end{array}
$$

- Weights don't need to be equal (but they must sum to 1)

$$
\frac{2+\mu p_{1}}{9+\mu} \quad \frac{4+\mu p_{2}}{9+\mu} \quad \frac{3+\mu p_{3}}{9+\mu}
$$

WEKA
 Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example: | | Outlook | Temp. | Humidity | Windy | Play |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $?$ | Cool | High | True | ? |

```
Likelihood of "yes" = 3/9 人 3/9 < 3/9 人 9/14 = 0.0238
Likelihood of "no" = 1/5 \times 4/5 \times 3/5 > 5/14 = 0.0343
P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
P("no") = 0.0343 / (0.0238 + 0.0343) = 59%
```

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:
- Sample mean $\mu \quad \mu=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Standard deviation $\sigma \quad \sigma=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}$

- Then the density function $f(x)$ is

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Classifying a new day

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	$?$

$$
\begin{aligned}
& \text { Likelihood of "yes" }=2 / 9 \times 0.0340 \times 0.0221 \times 3 / 9 \times 9 / 14=0.000036 \\
& \text { Likelihood of "no" }=3 / 5 \times 0.0221 \times 0.0381 \times 3 / 5 \times 5 / 14=0.000108 \\
& P(" y e s ")=0.000036 /(0.000036+0.000108)=25 \% \\
& P(" n o ")=0.000108 /(0.000036+0.000108)=75 \%
\end{aligned}
$$

- Missing values during training are not included in calculation of mean and standard deviation
- Example density value:

$$
f(\text { temperature }=66 \mid \text { yes })=\frac{1}{\sqrt{2 \pi} 6.2} \mathrm{e}^{-\frac{(66-73)^{2}}{2 \cdot 6 \cdot 2^{2}}}=0.0340
$$

- weka
 Probability densities

- Relationship between probability and density:

$$
\operatorname{Pr}\left[c-\frac{\epsilon}{2}<\chi<c+\frac{\epsilon}{2}\right] \approx \epsilon \times f(c)
$$

- But: this doesn't change calculation of a posteriori probabilities because ε cancels out
- Exact relationship:

$$
\operatorname{Pr}[a \leqslant x \leqslant b]=\int_{a}^{b} f(t) d t
$$

WEka Multinomial naïve Bayes I

- Version of naïve Bayes used for document classification using bag of words model
- $n_{i}, n_{z}, \ldots, n_{k}$: number of times word i occurs in document
- $P_{r^{\prime}} P_{2} \ldots, P_{k}$: probability of obtaining word i when sampling from documents in class H
- Probability of observing document E given class H (based on multinomial distribution):

$$
\operatorname{Pr}[E \mid H] \approx N!\times \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{n_{i}!}
$$

- Ignores probability of generating a document of the right length (prob. assumed constant for each class)

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed $(\rightarrow$ kernel density estimators)

- Multinomial naïve Bayes II

- Suppose dictionary has two words, yellow and blue
- Suppose $\operatorname{Pr}[$ yellow | H] $=75 \%$ and $\operatorname{Pr}[$ blue $\mid H]=25 \%$
- Suppose E is the document "blue yellow blue"
- Probability of observing document:

$$
\operatorname{Pr}[\{\text { blue yellow blue }\} \mid H] \approx 3!\times \frac{0.75^{1}}{1!} \times \frac{0.25^{2}}{2!}=\frac{9}{64} \approx 0.14
$$

Suppose there is another class H^{\prime} that has
$\operatorname{Pr}\left[\right.$ yellow $\left.\mid H^{\prime}\right]=10 \%$ and $\operatorname{Pr}\left[\right.$ yellow $\left.\mid H^{\prime}\right]=90 \%$:
$\operatorname{Pr}\left[\{\right.$ blue yellow blue $\left.\} \mid H^{\prime}\right] \approx 3!\times \frac{0.1^{1}}{1!} \times \frac{0.9^{2}}{2!}=0.24$

- Need to take prior probability of class into account to make final classification
- Factorials don't actually need to be computed
- Underflows can be prevented by using logarithms

