

WEKA The University Mining association rules

- Naïve method for finding association rules:
 - Use separate-and-conquer method
 - Treat every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- But: we can look for high support rules directly!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

1

Item sets

- Support: number of instances correctly covered by association rule
 - The same as the number of instances covered by *all* tests in the rule (LHS and RHS!)
- *Item*: one test/attribute-value pair
- Item set: all items occurring in a rule
- Goal: only rules that exceed pre-defined support
 - ⇒ Do it by finding all item sets with the given minimum support and generating rules from them!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

2

Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Item sets for weather data

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny Temperature = Hot (2)	Outlook = Sunny Temperature = Hot Humidity = High (2)	Outlook = Sunny Temperature = Hot Humidity = High Play = No (2)
Temperature = Cool (4)	Outlook = Sunny Humidity = High (3)	Outlook = Sunny Humidity = High Windy = False (2)	Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)
			Play = Yes (2)

• In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)

Generating rules from an item set

- Once all item sets with minimum support have been generated, we can turn them into rules
- Example:

```
Humidity = Normal, Windy = False, Play = Yes (4)
```

• Seven (2^N-1) potential rules:

```
If Humidity = Normal and Windy = False then Play = Yes 4/4

If Humidity = Normal and Play = Yes then Windy = False 4/6

If Windy = False and Play = Yes then Humidity = Normal 4/6

If Humidity = Normal then Windy = False and Play = Yes 4/7

If Windy = False then Humidity = Normal and Play = Yes 4/8

If Play = Yes then Humidity = Normal and Windy = False 4/9

If True then Humidity = Normal and Windy = False and Play = Yes 4/12
```

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

5

WEKA The University of Waikato

Rules for weather data

• Rules with support > 1 and confidence = 100%:

	Association rule		Sup.	Conf.
1	Humidity=Normal Windy=False	⇒ Play=Yes	4	100%
2	Temperature=Cool	⇒ Humidity=Normal	4	100%
3	Outlook=Overcast	⇒ Play=Yes	4	100%
4	Temperature=Cold Play=Yes	\Rightarrow Humidity=Normal	3	100%
	•••	•••	• • •	• • •
58	Outlook=Sunny Temperature=Hot	\Rightarrow Humidity=High	2	100%

• In total:

3 rules with support four 5 with support three

50 with support two

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

6

WEKA The University of Walkato

Example rules from the same set

• Item set:

```
Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)
```

• Resulting rules (all with 100% confidence):

```
Temperature = Cool, Windy = False ⇒ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal ⇒ Play = Yes
Temperature = Cool, Windy = False, Play = Yes ⇒ Humidity = Normal
```

due to the following "frequent" item sets:

```
Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)
```


Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is frequent k-item set, then all (k-1)-item subsets of X are also frequent
 - \Rightarrow Compute k-item set by merging (k-1)-item sets

Example

- Given: five three-item sets
 (ABC), (ABD), (ACD), (ACE), (BCD)
- Lexicographically ordered!
- Candidate four-item sets:

```
(A B C D) OK because of (A C D) (B C D)
(A C D E) Not OK because of (C D E)
```

- Final check by counting instances in dataset!
- (k-1)-item sets are stored in hash table

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

9

WEKA The University of Waikato

Generating rules efficiently

- We are looking for all high-confidence rules
 - Support of antecedent obtained from hash table
 - But: brute-force method is (2^N-1)
- Better way: building (c + 1)-consequent rules from c-consequent ones
 - Observation: (*c* + 1)-consequent rule can only hold if all corresponding *c*-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

10

WEKA The University of Waikato

Example

- 1-consequent rules:
 - If Outlook = Sunny and Windy = False and Play = No
 then Humidity = High (2/2)
 - If Humidity = High and Windy = False and Play = No
 then Outlook = Sunny (2/2)

Corresponding 2-consequent rule:

- If Windy = False and Play = No
 then Outlook = Sunny and Humidity = High (2/2)
- Final check of antecedent against hash table!

Association rules: discussion

- Above method makes one pass through the data for each different size item set
 - Other possibility: generate (*k*+2)-item sets just after (*k*+1)-item sets have been generated
 - Result: more (k+2)-item sets than necessary will be considered but less passes through the data
 - · Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)

Other issues

- Standard ARFF format very inefficient for typical *market basket data*
 - Attributes represent items in a basket and most items are usually missing
 - Data should be represented in sparse format
- Instances are also called *transactions*
- Confidence is not necessarily the best measure
 - Example: milk occurs in almost every supermarket transaction
 - Other measures have been devised (e.g. lift)

Data Mining: Practical Machine Learning Tools and Techniques (Char
--