- Naïve method for finding association rules:
- Use separate-and-conquer method
- Treat every possible combination of attribute values as a separate class
- Two problems:
- Computational complexity
- Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- But: we can look for high support rules directly!


## Item sets

- Support: number of instances correctly covered by association rule
- The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set : all items occurring in a rule
- Goal: only rules that exceed pre-defined support
$\Rightarrow$ Do it by finding all item sets with the given minimum support and generating rules from them!


## Weather data

## WЕKA <br> Item sets for weather data

| Outlook | Temp | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Hot | High | False | No |
| Sunny | Hot | High | True | No |
| Overcast | Hot | High | False | Yes |
| Rainy | Mild | High | False | Yes |
| Rainy | Cool | Normal | False | Yes |
| Rainy | Cool | Normal | True | No |
| Overcast | Cool | Normal | True | Yes |
| Sunny | Mild | High | False | No |
| Sunny | Cool | Normal | False | Yes |
| Rainy | Mild | Normal | False | Yes |
| Sunny | Mild | Normal | True | Yes |
| Overcast | Mild | High | True | Yes |
| Overcast | Hot | Normal | False | Yes |
| Rainy | Mild | High | True | No |

## Rules for weather data

- Once all item sets with minimum support have been generated, we can turn them into rules
- Example:

Humidity $=$ Normal, Windy $=$ False, Play $=$ Yes (4)

- Seven ( $2^{\mathrm{N}}-1$ ) potential rules:

$$
\begin{array}{lll}
\text { If Humidity }=\text { Normal and Windy = False then Play = Yes } & 4 / 4 \\
\text { If Humidity = Normal and Play = Yes then Windy = False } & 4 / 6 \\
\text { If Windy = False and Play }=\text { Yes then Humidity = Normal } & 4 / 6 \\
\text { If Humidity = Normal then Windy = False and Play = Yes } & 4 / 7 \\
\text { If Windy = False then Humidity = Normal and Play = Yes } & 4 / 8 \\
\text { If Play = Yes then Humidity = Normal and Windy = False } & 4 / 9 \\
\text { If True then Humidity = Normal and Windy = False } & \\
\text { and Play = Yes }
\end{array}
$$

## Example rules from the same set

## - Item set:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

- Resulting rules (all with $100 \%$ confidence):

Temperature = Cool, Windy = False $\Rightarrow$ Humidity = Normal, Play = Yes Temperature $=$ Cool, Windy $=$ False, Humidity $=$ Normal $\Rightarrow$ Play $=$ Yes Temperature $=$ Cool, Windy $=$ False, Play $=$ Yes $\Rightarrow$ Humidity $=$ Normal
due to the following "frequent" item sets:

```
Temperature = Cool, Windy = False(2)
```

Temperature $=$ Cool, Humidity $=$ Normal, Windy $=$ False

```(2)
```

- Rules with support $>1$ and confidence $=100 \%$ :

|  | Association rule |  | Sup. | Conf. |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Humidity=Normal Windy=False | $\Rightarrow$ Play=Yes | 4 | $100 \%$ |
| 2 | Temperature=Cool | $\Rightarrow$ Humidity=Normal | 4 | $100 \%$ |
| 3 | Outlook=Overcast | $\Rightarrow$ Play=Yes | 4 | $100 \%$ |
| 4 | Temperature=Cold Play=Yes | $\Rightarrow$ Humidity=Normal | 3 | $100 \%$ |
|  | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| 58 | Outlook=Sunny Temperature=Hot | $\Rightarrow$ Humidity=High | 2 | $100 \%$ |

- In total:

3 rules with support four
5 with support three
50 with support two

## Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
- If (A B) is frequent item set, then (A) and (B) have to be frequent item sets as well!
- In general: if X is frequent $k$-item set, then all ( $k-1$ ). item subsets of X are also frequent
$\Rightarrow$ Compute $k$-item set by merging ( $k$-1)-item sets
- Given: five three-item sets

- Lexicographically ordered!
- Candidate four-item sets:

| $\left(\begin{array}{ll}A & B \\ C\end{array}\right)$ | OK because of (A C D) (BCD) |
| :--- | :--- |
| $\left(\begin{array}{ll}A & C \\ \hline\end{array}\right)$ | Not OK because of (C D E) |

- Final check by counting instances in dataset!
- $(k-1)$-item sets are stored in hash table


## Example

- 1-consequent rules:

```
If Outlook = Sunny and Windy = False and Play = No
    then Humidity = High (2/2)
If Humidity = High and Windy = False and Play = No
    then Outlook = Sunny (2/2)
```

Corresponding 2 -consequent rule:

```
If Windy = False and Play = No
    then Outlook = Sunny and Humidity = High (2/2)
```

- Final check of antecedent against hash table!
- We are looking for all high-confidence rules
- Support of antecedent obtained from hash table
- But: brute-force method is ( $2^{\mathrm{N}}-1$ )
- Better way: building ( $c+1$ )-consequent rules from $c$-consequent ones
- Observation: $(c+1)$-consequent rule can only hold if all corresponding $c$-consequent rules also hold
- Resulting algorithm similar to procedure for large item sets


## Association rules: discussion

- Above method makes one pass through the data for each different size item set
- Other possibility: generate ( $k+2$ )-item sets just after $(k+1)$-item sets have been generated
- Result: more ( $k+2$ )-item sets than necessary will be considered but less passes through the data
- Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)


## Other issues

- Standard ARFF format very inefficient for typical market basket data
- Attributes represent items in a basket and most items are usually missing
- Data should be represented in sparse format
- Instances are also called transactions
- Confidence is not necessarily the best measure
- Example: milk occurs in almost every supermarket transaction
- Other measures have been devised (e.g. lift)

