

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 3 of $Data\ Mining\$ by I. H. Witten and E. Frank

Some Core Learning Representations

- Decision trees
- Learning Rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Linear regression
- Trees for numeric prediction
- Instance-based representation
- Clusters

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

_

Output: representing structural pattern

- Many different ways of representing patterns
 - Decision trees, rules, instance-based, ...
- Also called "knowledge" representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, ...)

3

Decision tables

- Simplest way of representing output:
- Use the same format as input!
- Decision table for the weather problem:

Outlook	Humidity	Play	
Sunny	High	No	
Sunny	Normal	Yes	
Overcast	High	Yes	
Overcast	Normal	Yes	
Rainy	High	No	
Rainy	Normal	No	

• Main problem: selecting the right attributes -Not used

Decision trees

- "Divide-and-conquer" approach produces tree
- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Leaves assign classification, set of classifications, or probability distribution to instances
- Unknown instance is routed down the tree

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

Nominal and numeric attributes

• Nominal:

number of children usually equal to number values

- ⇒ attribute won't get tested more than once
- Other possibility: division into two subsets
- Numeric:

test whether value is greater or less than constant

- ⇒ attribute may get tested several times
- Other possibility: three-way split (or multi-way split)
- Integer: less than, equal to, greater than
- Real: below, within, above

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

6

Missing values

- Does absence of value have some significance?
- Yes ⇒ "missing" is a separate value
- No ⇒ "missing" must be treated in a special way
 - Solution A: assign instance to most popular branch
 - Solution B: split instance into pieces
 - Pieces receive weight according to fraction of training instances that go down each branch
 - Classifications from leave nodes are combined using the weights that have percolated to them

Classification rules

- Popular alternative to decision trees
- *Antecedent* (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- *Consequent* (conclusion): classes, set of classes, or probability distribution assigned by rule
- Coverage: fraction of records that satisfy antecedent
- Accuracy: fraction of those covered by the rule which satisfy the consequent.

From trees to rules

- Easy: converting a tree into a set of rules
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
 - · Doesn't matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - Pruning to remove redundant tests/rules

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

9

11

From rules to trees

- More difficult: transforming a rule set into a tree
- Tree cannot easily express disjunction between rules
- Example: rules which test different attributes

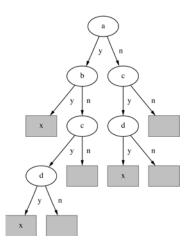
If a and b then x
If c and d then x

- Symmetry needs to be broken select a root
- Corresponding tree contains identical subtrees (⇒ "replicated subtree problem")

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

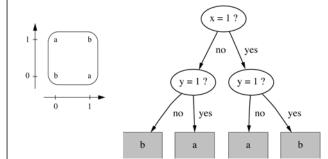
10

A tree for a simple disjunction



WEKA The University of Waintele

The exclusive-or problem



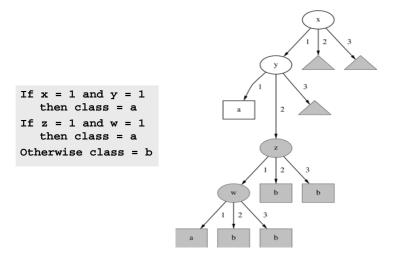
If x = 1 and y = 0
 then class = a

If x = 0 and y = 1
 then class = a

If x = 0 and y = 0
 then class = b

If x = 1 and y = 1
 then class = b

A tree with a replicated subtree



Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

1.

WEKA Titus University of Waiteste

"Nuggets" of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules ("decision list")
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

1.4

Special case: boolean class

- Assumption: if instance does not belong to class "yes", it belongs to class "no"
- Trick: only learn rules for class "yes" and use default rule for "no"

If x = 1 and y = 1 then class = a

If z = 1 and w = 1 then class = a

Otherwise class = b

- Order of rules is not important. No conflicts!
- Rule can be written in *disjunctive normal form*

Association rules

- Association rules...
 - ... can predict any attribute and combinations of attributes
 - ... are not intended to be used together as a set
- Problem: immense number of possible associations
 - Output needs to be restricted to show only the most predictive associations ⇒ only those with high *support* and high *confidence*

Support and confidence of a rule

- Support: number of instances predicted correctly (typically, a fraction of the total # instances)
- Confidence: number of correct predictions, as proportion of all instances that rule applies to
- Example: 4 cool days with normal humidity

```
If temperature = cool then humidity = normal
```

- \Rightarrow Support = 4, confidence = 100%
- Normally: minimum support and confidence prespecified (e.g. 58 rules with support ≥ 2 and confidence ≥ 95% for weather data)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

17

WEKA Tier University of Walleste

Rules with exceptions

- Idea: allow rules to have *exceptions*
- Example: rule for iris data

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor

• New instance:

Sepai	Sepai	Petal	Petal	туре
length	width	length	width	
5.1	3.5	2.6	0.2	Iris-setosa

• Modified rule:

If petal-length \geq 2.45 and petal-length < 4.45 then Iris-versicolor EXCEPT if petal-width < 1.0 then Iris-setosa

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

18

A more complex example

• Exceptions to exceptions to exceptions ...

WEKA Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - "Normal" rule sets don't offer this advantage

Rules involving relations

- So far: all rules involved comparing an attributevalue to a constant (e.g. temperature < 45)
- These rules are called "propositional" because they have the same expressive power as propositional logic
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - Can't be expressed with propositional rules
 - More expressive representation required

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

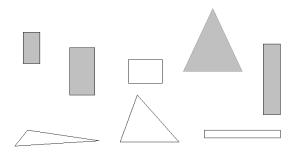
2

23

The shapes problem

• Target concept: standing up

• Shaded: *standing* Unshaded: *lying*



Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

22

A propositional solution

Width	Height	Sides	Class
2	4	4	Standing
3	6	4	Standing
4	3	4	Lying
7	8	3	Standing
7	6	3	Lying
2	9	4	Standing
9	1	4	Lying
10	2	3	Lying

If width ≥ 3.5 and height < 7.0 then lying

If height ≥ 3.5 then standing

WEKA The University of Blailedo

A relational solution

Comparing attributes with each other

If width > height then lying
If height > width then standing

- · Generalizes better to new data
- Standard relations: =, <, >
- But: learning relational rules is costly
- Simple solution: add extra attributes (e.g. a binary attribute *is width < height?*)

Trees for numeric prediction

- *Regression*: the process of computing an expression that predicts a numeric quantity
- Regression tree: "decision tree" where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- *Model tree:* "regression tree" with linear regression models at the leaf nodes
 - Linear patches approximate continuous function

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

2:

27

WEKA The University of Walledo

Linear regression for the CPU data

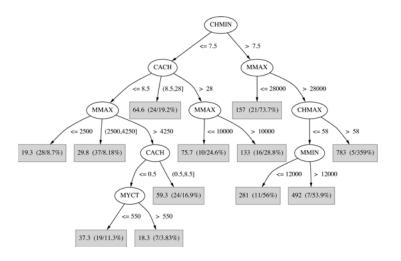
PRP =
- 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1 46 CHMAX

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

26

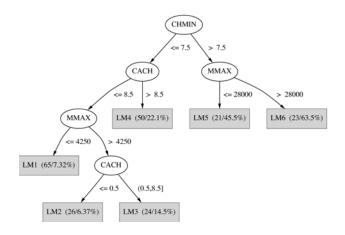
WEKA Title University of Walledto

Regression tree for the CPU data



WEKA The University of Walleste

Model tree for the CPU data



Instance-based representation

- Simplest form of learning: rote learning
 - Training instances are searched for instance that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning
- Similarity function defines what's "learned"
- Instance-based learning is *lazy* learning
- Methods: nearest-neighbor, k-nearest-neighbor, ...

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

29

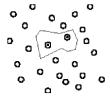
The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

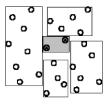
30

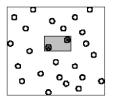
Learning prototypes



- Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- Idea: only use *prototypical* examples

Rectangular generalizations

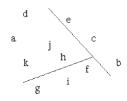




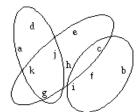
- Nearest-neighbor rule is used outside rectangles
- Rectangles are rules! (But they can be more conservative than "normal" rules.)
- Nested rectangles are rules with exceptions

Representing clusters I

Simple 2-D representation



Venn diagram



Overlapping clusters

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

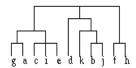
3

Representing clusters II

Probabilistic assignment

	1	2	3
a b c	0.4 0.1 0.3 0.1	0.1 0.8 0.3 0.1	0.5 0.1 0.4 0.8
e f g h	0.4 0.1 0.7 0.5	0.2 0.4 0.2 0.4	0.4 0.5 0.1 0.1

Dendrogram



NB: dendron is the Greek word for tree

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

34