ENEE759G: Advanced Topics in Computer Engineering - Unsupervised Learning

Fall 2014 (TuTh 3:30 – 4:45; EGR 3106)
Instructor: Joseph JaJa
Course Syllabus

Course Objectives: The course will cover core topics in unsupervised learning with a focus on related statistical techniques. Topics covered will include: density estimation, latent variable models, mixture models, clustering, graphical models and inference, learning graphical models, and association rules. A significant background in probability and statistics, linear Algebra, and data structures and algorithms is required for this course.

Course prerequisites: Graduate standing

Prerequisite topics: Strong background in probability and statistics, Linear Algebra, and data structures and algorithms.

Textbooks: No textbook is required for this course but the following can be used as references:

Core Topics:

1. Introduction
 - Basic framework and concepts
 - Probability Review
 - Probability density estimates for low-dimensional data
 - Maximum Likelihood Estimation and Bayesian Estimation.

2. Latent Variable Models
 - Principal Component Analysis
 - Gaussian Mixture Models and the EM algorithm
 - Introduction to Factor Analysis
 - Independent Component Analysis

3. Clustering
 - Proximity measures and evaluation methodologies
 - The k-means algorithm and its variant the k-medoid algorithm
 - Hierarchical clustering
 - Spectral clustering

4. Directed Graphical Models
 - Basic definitions and properties
 - Naive Bayesian networks
 - Inference: Exact and Approximate
 - Learning Bayesian networks
5. **Undirected Graphical Models**
 - Basic definitions and concepts
 - Markov properties
 - Factor graphs
 - Inference algorithms

6. **Association Rules**
 - Market Basket analysis and overall strategy
 - The Apriori Algorithm
 - Rule Generation

Midterm: October 23 – 40%; Final: Date TBA – 40%; Homeworks: 20%

Homeworks: For each of eight of the techniques listed below, you are supposed to describe a specific real-world application that has been addressed using that technique. Your description must be less than a 2-page pdf document using the following format:

- **Statement of the Problem**
- **Data Used**
- **Technique Used**
- **Summary of Results**
- **Reference(s)**

Select eight out of the following list of techniques:

1. Parzen density estimate
2. Maximum Likelihood estimation
3. Principal Component Analysis
4. Factor Analysis
5. Independent Component Analysis
6. K-means clustering
7. Hierarchical clustering
8. Spectral clustering
9. Naïve Bayesian networks
10. Bayesian networks
11. Undirected Graphical Models

The due date for each technique will be within a week after the topic is covered in class.

Contact Information

<table>
<thead>
<tr>
<th>Instructor:</th>
<th>Joseph JaJa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office:</td>
<td>3433 A. V. Williams</td>
</tr>
<tr>
<td>Office Hours:</td>
<td>M 4-5 and Th 1:30-3 or by appointment</td>
</tr>
<tr>
<td>Email:</td>
<td>Joseph@umiacs.umd.edu</td>
</tr>
<tr>
<td>Phone:</td>
<td>405-1925</td>
</tr>
</tbody>
</table>