Learned Prioritization for Trading Off Speed and Accuracy

Jiarong Jiang1 \quad Adam Teichert2 \quad Hal Daumé III1 \\
\quad Jason Eisner2 \\

1University of Maryland, College Park \\
2Johns Hopkins University \\

ICML workshop on Inferning: Interactions between Inference and Learning
Fast and accurate structured prediction
Introduction

- Fast and accurate structured prediction
- Manual exploration of speed/accuracy tradeoff
 - Prioritization heuristics
 - A* [Klein and Manning, 2003]
 - Hierarchical A* [Pauls and Klein, 2010]
 - Pruning heuristics
 - Coarse-to-fine pruning [Charniak et al., 2006; Petrov and Klein, 2007]
 - Classifier-based pruning [Roark and Hollingshead, 2008]
Introduction

- Fast and accurate structured prediction
- Manual exploration of speed/accuracy tradeoff
 - Prioritization heuristics
 - A* [Klein and Manning, 2003]
 - Hierarchical A* [Pauls and Klein, 2010]
 - Pruning heuristics
 - Coarse-to-fine pruning [Charniak et al., 2006; Petrov and Klein, 2007]
 - Classifier-based pruning [Roark and Hollingshead, 2008]
- Goal: learn a heuristic for your input distribution, grammar, and speed/accuracy needs
Introduction

- Fast and accurate structured prediction
- Manual exploration of speed/accuracy tradeoff
 - Prioritization heuristics
 - A* [Klein and Manning, 2003]
 - Hierarchical A* [Pauls and Klein, 2010]
 - Pruning heuristics
 - Coarse-to-fine pruning [Charniak et al., 2006; Petrov and Klein, 2007]
 - Classifier-based pruning [Roark and Hollingshead, 2008]
- Goal: learn a heuristic for your input distribution, grammar, and speed/accuracy needs
- Objective measure

\[\text{quality} = \text{accuracy} - \lambda \times \text{time} \]
Agenda-based Parsing

0 Time 1 flies 2 like 3 an 4 arrow 5
N V P DET N
NP
PP
NP VP
S
S
S
NP
VP
NP
Agenda-based Parsing

GRAMMAR
1. S -> NP VP
2. S -> Vst NP
3. S -> S PP
4. VP -> VP PP
5. VP -> V NP
6. NP -> DET N
7. NP -> NP PP
8. NP -> NP NP
9. PP -> P NP

AGENDA

0: Time
1: flies
2: like
3: an
4: arrow

Jiang, Teichert, Daumé, Eisner (UMD, JHU)
Agenda-based Parsing

GRAMMAR

1. S -> NP VP
2. S -> Vst NP
3. S -> S PP
4. VP -> VP PP
5. VP -> V NP
6. NP -> DET N
7. NP -> NP PP
8. NP -> NP NP
9. PP -> P NP

AGENDA

10 3NP 5

0 Time 1 flies 2 like 3 an 4 arrow 5
Priority-based Inference

Agenda-based Parsing

GRAMMAR
1. S -> NP VP
2. S -> S PP
3. NP -> DET N
4. NP -> NP PP
5. NP -> NP NP
6. PP -> P NP

AGENDA

0 Time 1 flies 2 like 3 an 4 arrow 5

Jiang, Teichert, Daumé, Eisner (UMD, JHU)
Priority-based Inference

Agenda-based Parsing

GRAMMAR
1 S -> NP VP
2 S -> S PP
1 VP -> VP PP
2 VP-> V NP
1 NP -> DET N
2 NP -> NP PP
3 NP -> NP NP
0 PP -> P NP

AGENDA

0 Time 1 flies 2 like 3 an 4 arrow 5
Agenda-based Parsing

GRAMMAR
1. S -> NP VP
2. S -> S PP
3. S -> Vst NP
4. VP -> VP PP
5. VP -> V NP
6. VP -> Vst NP
7. NP -> DET N
8. NP -> NP PP
9. NP -> NP NP
10. PP -> P NP
11. S 8
12. NP 10
13. NP 4
14. NP 3
15. VP 4
16. VP 3
17. S 8
18. NP 10
19. NP 4
20. NP 3
21. VP 4
22. VP 3
23. S 8
24. NP 10
25. NP 4
26. NP 3
27. VP 4
28. VP 3
29. S 8
30. NP 10
31. NP 4
32. NP 3
33. VP 4
34. VP 3

AGENDA
10 2PP 5
12 2VP 5

Prioritize based Inference
Priority-based Inference

Agenda-based Parsing

GRAMMAR
1. S -> NP VP
6. S -> Vst NP
2. S -> S PP
1. VP -> VP PP
2. VP -> V NP
1. NP -> DET N
2. NP -> NP PP
3. NP -> NP NP
0. PP -> P NP

AGENDA
10. PP
12. VP

0. Time
1. flies
2. like
3. an
4. arrow
5.
All experiments are on Penn Treebank WSJ with sentence length ≤ 15.

Preliminary results setup:
- Berkeley latent variable PCFG trained on section 2-20
- Training set: 100 sentences from section 21
- Evaluated on the same 100 sentences

Baseline 1: Exhaustive Search
Recall: 93.3; Relative number of pops: 3.0x

Baseline 2: Uniform Cost Search (UC)
Recall: 93.3; Relative number of pops: 1.0x

Baseline 3: Pruned Uniform Cost Search
Recall: 92.0; Relative number of pops: 0.33x
Agenda-based Parsing as a Markov Decision Process

- State space: current chart and agenda
- Action: pop a partial parse from the agenda
- Transition: Given the chosen action, deterministically updates chart and pushes other parses to the agenda
- Policy: computes action priorities from extracted features

\[\pi_\theta(s) = \arg \max_a \theta \cdot \phi(a, s) \]

(Delayed) Reward

\[\text{reward} = \text{accuracy} - \lambda \times \text{time} \]

- accuracy = labeled span recall
- time = # of pops from agenda
Agenda-based Parsing as a Markov Decision Process

- State space: current chart and agenda
- Action: *pop* a partial parse from the agenda
- Transition: Given the chosen action, deterministically updates chart and pushes other parses to the agenda
- Policy: computes action priorities from extracted features

\[\pi_\theta(s) = \arg \max_a \theta \cdot \phi(a, s) \]

- (Delayed) Reward

\[\text{reward} = \text{accuracy} - \lambda \times \text{time} \]

- accuracy = labeled span recall
- time = # of pops from agenda

Learning Policy = Learning Prioritization Function
Decoding as a Markov Decision Process (MDP)

GRAMMAR

1. $S \rightarrow NP \ VP$
2. $S \rightarrow Vst \ NP$
3. $S \rightarrow S \ PP$
4. $VP \rightarrow VP \ PP$
5. $VP \rightarrow V \ NP$
6. $NP \rightarrow DET \ N$
7. $NP \rightarrow NP \ PP$
8. $NP \rightarrow NP \ NP$
9. $PP \rightarrow P \ NP$

AGENDA

- $10???$
- $12???$
- $2PP_5$
- $2VP_5$
Boltzmann Exploration

- Transition at test time: deterministic
- Transition at training time: exploration with stochastic policies: $\pi_{\theta}(a \mid s)$.
- Boltzmann exploration:

$$\pi_{\theta}(a \mid s) = \frac{1}{Z(s)} \exp \left[\frac{1}{\text{temp}} \theta \cdot \phi(a, s) \right]$$

- Temperature $\to 0$, exploration \to exploitation
- A trajectory $\tau = \langle s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_T, a_T, r_T \rangle$.
- Expected future reward:

$$R = \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r_t \right].$$
Policy Gradient

- Find parameters that maximize the expected reward with respect to the induced distribution over trajectories

- Policy gradient [Sutton et al., 2000]
 The gradient of the objective

\[
\nabla_\theta \mathbb{E}_\tau [R(\tau)] = \mathbb{E}_\tau \left[R(\tau) \sum_{t=0}^{T} \nabla_\theta \log \pi(a_t | s_t) \right]
\]

where

\[
\nabla_\theta \log \pi_\theta(a | s) = \frac{1}{\text{temp}} \left(\tilde{\phi}(a_t, s_t) - \sum_{a' \in A} \pi_\theta(a' | s_t) \tilde{\phi}(a', s_t) \right)
\]
Features

1. Width of partial parse
2. Viterbi inside score
3. Touches start of sentence?
4. Touches end of sentence?
5. Ratio of width to sentence length
6. $\log p(label \mid \text{prev POS})$ and $\log p(label \mid \text{next POS})$
 (statistics extracted from labeled trees, word POS assumed to be most frequent)
7. Case pattern of first word in partial parse and previous/next word
8. Punctuation pattern in partial parse (five most frequent)
Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>

Main Difficulty: Jiang, Teichert, Daumé, Eisner (UMD, JHU)
Policy Gradient with Boltzmann Exploration

- Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>

- Main Difficulty:

Which actions were “responsible” for a trajectory’s reward?
Reward Shaping

- Goal: give the agent reward *earlier* in a trajectory in order to improve its convergence rate
- Push back reward to actions

\[\tilde{r}(s, a) = \begin{cases}
\frac{\xi(a)}{n} - \lambda & \text{if } a \text{ is a full parse tree} \\
\frac{1}{n} - \lambda & \text{if } a \text{ is in the true parse} \\
-\lambda & \text{otherwise}
\end{cases} \]

\(\xi(s) \): a negative reward for actions which received early reward for constituents that were not in the final parse

- Property: \(R(\tau) = \sum_{t=0}^{T} \tilde{r}(s, a) \)
Reward Shaping
Attempt 2: Policy Gradient with Reward Shaping

Reward Shaping
 Attempt 2: Policy Gradient with Reward Shaping

Reward Shaping

- **The man ate**
- **r=0-α**
- **r=1/3-α**
- **PP**
- **NP**
- **VP**
- **VP**
- **FRAG**
- **R=1/3-α4**
- **r=0-α**
- **r=1/3-α**
- **PP**
- **r=0-α**
- **r=1/3-α**
- **PP**
- **r=0-α**
- **FRAG**
- **S**
- **R=3/3-α4**
- **R=3/3-α3**
Reward Shaping

Gradient step:

\[
\nabla_\theta \mathbb{E}_\tau [R(\tau)] = \nabla_\theta \mathbb{E}_\tau [\tilde{R}(\tau)] = \mathbb{E}_\tau \left[\sum_{t=0}^{T} \left(\sum_{t'=t}^{T} \gamma^{t'-t} \tilde{r}_{t'} \right) \right] \nabla_\theta \log \pi(a_t | s_t)
\]
Reward Shaping

Gradient step:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \nabla_{\theta} \mathbb{E}_{\tau}[\tilde{R}(\tau)] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T} \left(\sum_{t'=t}^{T} \gamma^{t'-t} \tilde{r}_{t'} \right) \nabla_{\theta} \log \pi(a_t | s_t) \right]$$

Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Gradient w/ Reward Shaping</td>
<td>76.5</td>
<td>0.13x</td>
</tr>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>

Main difficulty: Only a few trajectories are reasonable!

Jiang, Teichert, Daumé, Eisner (UMD, JHU)
Reward Shaping

Gradient step:

\[\nabla_{\theta} \mathbb{E}_{\tau} [R(\tau)] = \nabla_{\theta} \mathbb{E}_{\tau} [\tilde{R}(\tau)] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T} \left(\sum_{t'=t}^{T} \gamma^{t'-t} \tilde{r}_{t'} \right) \nabla_{\theta} \log \pi(a_t | s_t) \right] \]

Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Gradient w/ Reward Shaping</td>
<td>76.5</td>
<td>0.13x</td>
</tr>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>

Main difficulty:

Only a few trajectories are reasonable!
Oracle Actions

- Focus on high-reward regions of policy space
Oracle Actions

- Focus on high-reward regions of policy space
- Oracle action: an action that leads to a maximum-reward tree, where reward is defined in terms of accuracy \textit{and} speed
Oracle Actions

- Focus on high-reward regions of policy space
- Oracle action: an action that leads to a maximum-reward tree, where reward is defined in terms of accuracy and speed
- How to get oracle actions?
 - Ground truth of a sentence
 - Exact parse with the best speed-accuracy tradeoff
Oracle Actions

- Focus on high-reward regions of policy space
- Oracle action: an action that leads to a maximum-reward tree, where reward is defined in terms of accuracy and speed
- How to get oracle actions?
 - Ground truth of a sentence
 - Exact parse with the best speed-accuracy tradeoff
- Apprenticeship learning via classification
 1. Generate classification examples \((s_t, a_t)\) labeled according to oracle actions
 2. Train a maximum entropy classifier
 3. Classifier objective: maximize number of times policy matches oracle action
Apprenticeship Learning via Classification

Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apprenticeship Learning via Classification</td>
<td>84.2</td>
<td>0.85x</td>
</tr>
<tr>
<td>Policy Gradient w/ Reward Shaping</td>
<td>76.5</td>
<td>0.13x</td>
</tr>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>
Apprenticeship Learning via Classification

- Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apprenticeship Learning via Classification</td>
<td>84.2</td>
<td>0.85x</td>
</tr>
<tr>
<td>Policy Gradient w/ Reward Shaping</td>
<td>76.5</td>
<td>0.13x</td>
</tr>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search</td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td>Pruned uniform cost search</td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>

- Main difficulty:

Too hard to imitate oracle with our features!
Goal: “interleaving” oracle actions with policy actions both feasible and sensible

Let π be an arbitrary policy and let $\delta \in [0, 1]$. The oracle infused policy π^+_δ is defined as follows:

$$\pi^+_\delta(a | s) = \delta \pi^*(a | s) + (1 - \delta) \pi(a | s)$$

- $\delta = 1$: the classifier-based approach
- $\delta = 0$: policy gradient
- $\delta = 0.8^{\text{epoch}}$
Oracle-Infused Policy Gradient

Preliminary results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Relative # of pops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle-Infused Policy Gradient</td>
<td>91.2</td>
<td>0.46x</td>
</tr>
<tr>
<td>Apprenticeship Learning via Classification</td>
<td>84.2</td>
<td>0.85x</td>
</tr>
<tr>
<td>Policy Gradient w/ Reward Shaping</td>
<td>76.5</td>
<td>0.13x</td>
</tr>
<tr>
<td>Policy Gradient w/ Boltzmann Exploration</td>
<td>56.4</td>
<td>0.46x</td>
</tr>
<tr>
<td>Uniform cost search Pruned uniform cost search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93.3</td>
<td>1.0x</td>
</tr>
<tr>
<td></td>
<td>92.0</td>
<td>0.33x</td>
</tr>
</tbody>
</table>
Final Results Setup:
- Berkeley latent variable PCFG trained on sections 2-21
- RL (if any) trained on section 22
- evaluated on section 23

Baselines:
- (HA*) a Hierarchical A* parser [3] with same pruning threshold at each hierarchy level
- (UC) uniform cost search
- (UC_p) pruned uniform cost search
- (A*_p) an A* variant, on which we decrease the pruning threshold if no tree is returned
- (CTF) an agenda-based coarse-to-fine parser [4].
Figure: Pareto frontiers: Our I^+ parser at different values of λ, against the baselines at different pruning levels. *Lower and further right* is better.
A novel oracle-infused variant of the policy gradient algorithm for reinforcement learning

Learn a fast and accurate parser with only a simple set of features

Limitation of the model:
 - Feature effectiveness v.s. cost
 - Stop criteria

5. S. Petrov and D. Klein. 2007. Improved inference for unlexicalized parsing. In NAACL/HLT.