Agenda Based Parsing

- **Goal**: find most likely parse w.r.t. a grammar
- **State Space**: current chart and agenda
- **Action**: choose a partial parse from agenda
- **Transitions**: given the chosen action, deterministically updates chart and builds and pushes other partial (or full) parses to agenda
- **Reward**: accuracy – time
e.g. Accuracy = labeled span recall, Time = # of pops from agenda
- **Policy**: deterministically pops highest-priority available action: \(\pi(s) = \arg\max_\pi \cdot <a, s> \)

\[\text{learning a policy = learning the priority function} \]

Agenda Based Parsing as a Markov Decision Process

- **State Space**: current chart and agenda
- **Action**: choose a partial parse from agenda
- **Transitions**: given the chosen action, deterministically updates chart and builds and pushes other partial (or full) parses to agenda
- **Reward**: accuracy – time
e.g. Accuracy = labeled span recall, Time = # of pops from agenda
- **Policy**: deterministically pops highest-priority available action: \(\pi(s) = \arg\max_\pi \cdot <a, s> \)

\[\text{learning a policy = learning the priority function} \]

Policy Gradient with Reward Shaping

- **Weakness of vanilla policy gradient with Boltzmann exploration**: No attempt to determine which actions were responsible for a trajectory’s reward
- **Reward Shaping**: fast convergence

\[\pi(s) = \rho <a, s> \quad \text{if a is a full parse tree} \]
\[\pi(s) = 1 - \rho \quad \text{if a is in the true parse} \]
\[\text{otherwise} \]

\(\rho <a, s> \): a negative reward for actions which received early reward for constituents that were not in the final parse.

\[\text{Result on development data: Recall = 56.4, Relative \# of pops = 0.46x} \]

Solution: Oracle-Infused Policy Gradient

- **Oracle action**: action that leads to a maximum-reward tree
- **Apprenticeship learning via classification**: following oracle trajectories = training a supervised log-linear classifier

\[\text{Result on development data: Recall = 84.2, Relative \# of pops = 0.85x} \]

Too hard to imitate oracle with our features

- **Oracle-infused policy**: \(\pi^*_w = \delta_{\delta} \left(\rho \pi^*_w(s) + (1 - \delta) \pi_w(s) \right) \)

\(\delta = \delta_{\text{epoch}} \)

- **Result on development data**: Recall = 91.2, Relative \# of pops = 0.46x

Solution: explore near oracle \[\delta_{\text{epoch}} \text{ slow}, \delta_{\text{epoch}} \text{ near learned policy} \]

Learned Prioritization for Trading Off Accuracy and Speed

Jiarong Jiang* Adam Teichert* Hal Daumé III* Jason Eisner*
*University of Maryland College Park **Johns Hopkins University

Policy Gradient with Reward Shaping

- **Weakness of vanilla policy gradient with Boltzmann exploration**: No attempt to determine which actions were responsible for a trajectory’s reward
- **Reward Shaping**: fast convergence

\[\pi(s) = \rho <a, s> \quad \text{if a is a full parse tree} \]
\[\pi(s) = 1 - \rho \quad \text{if a is in the true parse} \]
\[\text{otherwise} \]

\(\rho <a, s> \): a negative reward for actions which received early reward for constituents that were not in the final parse.

\[\text{Result on development data: Recall = 56.4, Relative \# of pops = 0.46x} \]

Solution: Oracle-Infused Policy Gradient

- **Oracle action**: action that leads to a maximum-reward tree
- **Apprenticeship learning via classification**: following oracle trajectories = training a supervised log-linear classifier

\[\text{Result on development data: Recall = 84.2, Relative \# of pops = 0.85x} \]

Too hard to imitate oracle with our features

- **Oracle-infused policy**: \(\pi^*_w = \delta_{\delta} \left(\rho \pi^*_w(s) + (1 - \delta) \pi_w(s) \right) \)

\(\delta = \delta_{\text{epoch}} \)

- **Result on development data**: Recall = 91.2, Relative \# of pops = 0.46x

Solution: explore near oracle \[\delta_{\text{epoch}} \text{ slow}, \delta_{\text{epoch}} \text{ near learned policy} \]

Learned Prioritization for Trading Off Accuracy and Speed

Jiarong Jiang* Adam Teichert* Hal Daumé III* Jason Eisner*
*University of Maryland College Park **Johns Hopkins University

Policy Gradient with Reward Shaping

- **Weakness of vanilla policy gradient with Boltzmann exploration**: No attempt to determine which actions were responsible for a trajectory’s reward
- **Reward Shaping**: fast convergence

\[\pi(s) = \rho <a, s> \quad \text{if a is a full parse tree} \]
\[\pi(s) = 1 - \rho \quad \text{if a is in the true parse} \]
\[\text{otherwise} \]

\(\rho <a, s> \): a negative reward for actions which received early reward for constituents that were not in the final parse.

\[\text{Result on development data: Recall = 56.4, Relative \# of pops = 0.46x} \]

Solution: Oracle-Infused Policy Gradient

- **Oracle action**: action that leads to a maximum-reward tree
- **Apprenticeship learning via classification**: following oracle trajectories = training a supervised log-linear classifier

\[\text{Result on development data: Recall = 84.2, Relative \# of pops = 0.85x} \]

Too hard to imitate oracle with our features

- **Oracle-infused policy**: \(\pi^*_w = \delta_{\delta} \left(\rho \pi^*_w(s) + (1 - \delta) \pi_w(s) \right) \)

\(\delta = \delta_{\text{epoch}} \)

- **Result on development data**: Recall = 91.2, Relative \# of pops = 0.46x

Solution: explore near oracle \[\delta_{\text{epoch}} \text{ slow}, \delta_{\text{epoch}} \text{ near learned policy} \]