A die is rolled twice

what is the probability that the sum of the faces is greater than 7, given that

- the first outcome was 4?
- the first outcome was greater than 4?
- the first outcome was a 1?
- the first outcome was less than 5?
Dice

- \(p(X_1 + X_2 > 7 | X_1 = 4) = \)
- \(p(X_1 + X_2 > 7 | X_1 > 4) = \)
- \(p(X_1 + X_2 > 7 | X_1 = 1) = \)
- \(p(X_1 + X_2 > 7 | X_1 < 5) = \)
Dice

- \(p(X_1 + X_2 > 7 | X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \)
- \(p(X_1 + X_2 > 7 | X_1 > 4) = \)
- \(p(X_1 + X_2 > 7 | X_1 = 1) = \)
- \(p(X_1 + X_2 > 7 | X_1 < 5) = \)
Dice

\[
p(X_1 + X_2 > 7 \mid X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3/36}{1/6} = \frac{1}{2}
\]

\[
p(X_1 + X_2 > 7 \mid X_1 > 4) =
\]

\[
p(X_1 + X_2 > 7 \mid X_1 = 1) =
\]

\[
p(X_1 + X_2 > 7 \mid X_1 < 5) =
\]
Dice

- \(p(X_1 + X_2 > 7 \mid X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3/36}{1/6} = \frac{1}{2} \)
- \(p(X_1 + X_2 > 7 \mid X_1 > 4) = \frac{p(X_1 + X_2 > 7 \land X_1 > 4)}{p(X_1 > 4)} = \)
- \(p(X_1 + X_2 > 7 \mid X_1 = 1) = \)
- \(p(X_1 + X_2 > 7 \mid X_1 < 5) = \)
Dice

- \(p(X_1 + X_2 > 7 \mid X_1 = 4) = \frac{p(X_1+X_2>7\land X_1=4)}{p(X_1=4)} = \frac{3/36}{1/6} = \frac{1}{2} \)
- \(p(X_1 + X_2 > 7 \mid X_1 > 4) = \frac{p(X_1+X_2>7\land X_1>4)}{p(X_1>4)} = \frac{9/36}{1/3} = \frac{27}{36} = \frac{3}{4} \)
- \(p(X_1 + X_2 > 7 \mid X_1 = 1) = \)
- \(p(X_1 + X_2 > 7 \mid X_1 < 5) = \)
Dice

- $p(X_1 + X_2 > 7 | X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3/36}{1/6} = \frac{1}{2}$
- $p(X_1 + X_2 > 7 | X_1 > 4) = \frac{p(X_1 + X_2 > 7 \land X_1 > 4)}{p(X_1 > 4)} = \frac{9/36}{1/3} = \frac{27}{36} = \frac{3}{4}$
- $p(X_1 + X_2 > 7 | X_1 = 1) = \frac{p(X_1 + X_2 > 7 \land X_1 = 1)}{p(X_1 = 1)} = \frac{1}{3}$
- $p(X_1 + X_2 > 7 | X_1 < 5) = \frac{1}{2}$
Dice

- \(p(X_1 + X_2 > 7 | X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3/36}{1/6} = \frac{1}{2} \)
- \(p(X_1 + X_2 > 7 | X_1 > 4) = \frac{p(X_1 + X_2 > 7 \land X_1 > 4)}{p(X_1 > 4)} = \frac{9/36}{1/3} = \frac{27}{36} = \frac{3}{4} \)
- \(p(X_1 + X_2 > 7 | X_1 = 1) = \frac{p(X_1 + X_2 > 7 \land X_1 = 1)}{p(X_1 = 1)} = \frac{0}{1/6} = 0 \)
- \(p(X_1 + X_2 > 7 | X_1 < 5) = \)
Dice

- $p(X_1 + X_2 > 7 | X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3}{36} \cdot \frac{1}{6} = \frac{1}{2}$
- $p(X_1 + X_2 > 7 | X_1 > 4) = \frac{p(X_1 + X_2 > 7 \land X_1 > 4)}{p(X_1 > 4)} = \frac{9}{36} \cdot \frac{1}{3} = \frac{27}{36} = \frac{3}{4}$
- $p(X_1 + X_2 > 7 | X_1 = 1) = \frac{p(X_1 + X_2 > 7 \land X_1 = 1)}{p(X_1 = 1)} = \frac{0}{1/6} = 0$
- $p(X_1 + X_2 > 7 | X_1 < 5) = \frac{p(X_1 + X_2 > 7 \land X_1 < 5)}{p(X_1 < 5)} =$
Dice

- \(p(X_1 + X_2 > 7 | X_1 = 4) = \frac{p(X_1 + X_2 > 7 \land X_1 = 4)}{p(X_1 = 4)} = \frac{3/36}{1/6} = \frac{1}{2} \)
- \(p(X_1 + X_2 > 7 | X_1 > 4) = \frac{p(X_1 + X_2 > 7 \land X_1 > 4)}{p(X_1 > 4)} = \frac{9/36}{1/3} = \frac{27}{36} = \frac{3}{4} \)
- \(p(X_1 + X_2 > 7 | X_1 = 1) = \frac{p(X_1 + X_2 > 7 \land X_1 = 1)}{p(X_1 = 1)} = \frac{0}{1/6} = 0 \)
- \(p(X_1 + X_2 > 7 | X_1 < 5) = \frac{p(X_1 + X_2 > 7 \land X_1 < 5)}{p(X_1 < 5)} = \frac{6/36}{2/3} = \frac{18}{64} = \frac{1}{4} \)
Children

What is the probability a family of two children has two boys
- given that it has at least one boy?
- given that the first child is a boy?
Children

- $P(X_1 = T, X_2 = T | X_1 = T \lor X_2 = T) =$
- $P(X_1 = T, X_2 = T | X_1 = T) =$
Children

- \(P(X_1 = T, X_2 = T \mid X_1 = T \lor X_2 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T \lor X_2 = T)} = \)
- \(P(X_1 = T, X_2 = T \mid X_1 = T) = \)
Children

- \(P(X_1 = T, X_2 = T | X_1 = T \lor X_2 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T \lor X_2 = T)} = \frac{1/4}{3/4} = \frac{1}{3} \)
- \(P(X_1 = T, X_2 = T | X_1 = T) = \)
Children

- \(P(X_1 = T, X_2 = T | X_1 = T \lor X_2 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T \lor X_2 = T)} = \frac{1/4}{3/4} = \frac{1}{3} \)
- \(P(X_1 = T, X_2 = T | X_1 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T)} = \)
Children

- $P(X_1 = T, X_2 = T \mid X_1 = T \lor X_2 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T \lor X_2 = T)} = \frac{1/4}{3/4} = \frac{1}{3}$

- $P(X_1 = T, X_2 = T \mid X_1 = T) = \frac{P(X_1 = T, X_2 = T)}{P(X_1 = T)} = \frac{1/4}{1/2} = \frac{1}{2}$
One coin in a collection of 65 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 6 times in a row, what is the probability that it is the two-headed coin?
Conditional Probabilities

- Let C be the coin chose (T for fake)
- Let H be the number of heads out of six

$$P(C = T | H = 6) =$$ (1)
Conditional Probabilities

- Let C be the coin chose (⊤ for fake)
- Let H be the number of heads out of six

$$P(C = \top | H = 6) = \frac{P(C = \top \land H = 6)}{P(H = 6)} =$$ (1)
Conditional Probabilities

- Let C be the coin chose (\top for fake)
- Let H be the number of heads out of six

$$P(C = \top | H = 6) = \frac{P(C = \top \land H = 6)}{P(H = 6)} = \frac{1/65}{1/65 + \frac{64}{65} \cdot \frac{1}{2^6}} = (1)$$
Conditional Probabilities

- Let C be the coin chose (\top for fake)
- Let H be the number of heads out of six

\[
P(C = \top | H = 6) = \frac{P(C = \top \land H = 6)}{P(H = 6)} = \frac{1/65}{1/65 + \frac{64}{65} \cdot \frac{1}{2^6}} = \frac{1/65}{2/65} = \frac{1}{2} \quad (1)
\]
Bayes Rule

There’s a test for Boogie Woogie Fever (BWF). The probability of getting a positive test result given that you have BWF is 0.8, and the probability of getting a positive result given that you do not have BWF is 0.01. The overall incidence of BWF is 0.01.

1. What is the marginal probability of getting a positive test result?
2. What is the probability of having BWF given that you got a positive test result?
Bayes Rule

Let D be the disease, T be the test

- $P(T = T) =$
- $P(D = T | T = T) =$
Bayes Rule

Let D be the disease, T be the test

- $P(T = T) = \sum_{x = T, \perp} P(T = T, D = x) = \quad$
- $P(D = T \mid T = T) = \quad$
Bayes Rule

Let D be the disease, T be the test

- $P(T = T) = \sum_{x=T,\perp} P(T = T, D = x) = 0.01 \cdot 0.8 + 0.99 \cdot 0.01 =$
- $P(D = T | T = T) =$
Bayes Rule

Let D be the disease, T be the test

- $P(T = T) = \sum_{x=T,\perp} P(T = T, D = x) = 0.01 \cdot .8 + .99 \cdot .01 = 0.02$
- $P(D = T | T = T) =$
Bayes Rule

Let D be the disease, T be the test

- $P(T = \top) = \sum_{x=\top,\bot} P(T = \top, D = x) = 0.01 \cdot .8 + .99 \cdot .01 = 0.02$
- $P(D = \top | T = \top) = \frac{P(T = \top | D = \top)P(D = \top)}{P(T = \top)}$
Bayes Rule

Let D be the disease, T be the test

- $P(T = \top) = \sum_{x = T, \bot} P(T = \top, D = x) = 0.01 \cdot 0.8 + 0.99 \cdot 0.01 = 0.02$
- $P(D = \top \mid T = \top) = \frac{P(T = \top \mid D = \top)P(D = \top)}{P(T = \top)} = \frac{0.8 \cdot 0.01}{0.02} =$
Bayes Rule

Let D be the disease, T be the test

- $P(T = T) = \sum_{x=T,\perp} P(T = T, D = x) = 0.01 \cdot .8 + .99 \cdot .01 = 0.02$
- $P(D = T | T = T) = \frac{P(T = T | D = T) P(D = T)}{P(T = T)} = \frac{0.8 \cdot 0.01}{0.02} = 0.4$