

Support Vector Machines

Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM TOM MITCHELL, ERIC XING, AND LAUREN HANNAH

Roadmap

- Classification: machines labeling data for us
- Previously: logistic regression
- This time: SVMs
 - (another) example of linear classifier
 - State-of-the-art classification
 - Good theoretical properties

Thinking Geometrically

- Suppose you have two classes: vacations and sports
- Suppose you have four documents

Sports	Vacations
Doc ₁ : {ball, ball, ball, travel}	Doc ₃ : {travel, ball, travel}
Doc ₂ : {ball, ball}	Doc ₄ : {travel}

What does this look like in vector space?

Put the documents in vector space

Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 10,000s of dimensions and more
- How can we do classification in this space?

Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a **contiguous region**.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Should the document * be assigned to China, UK or Kenya?

Find separators between the classes

Find separators between the classes

Based on these separators: * should be assigned to China

How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
 - Classification decision: $\sum_i \beta_i x_i > \beta_0$? (β_0 is our bias)
 - . . . where β_0 (the threshold) is a parameter.
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are **linearly separable**.

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
 - Classification decision: $\sum_i \beta_i x_i > \beta_0$? (β_0 is our bias)
 - . . . where β_0 (the threshold) is a parameter.
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are **linearly separable**.
- Before, we just talked about equations. What's the geometric intuition?

• A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$

• A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$

•
$$x = \beta_0 / \beta_1$$

- A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$
- $x = \beta_0 / \beta_1$
- Points (x_1) with $\beta_1 x_1 \ge \beta_0$ are in the class *c*.

- A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$
- $x = \beta_0 / \beta_1$
- Points (x_1) with $\beta_1 x_1 \ge \beta_0$ are in the class *c*.
- Points (x₁) with β₁x₁ < β₀ are in the complement class c.

• A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier
- Points $(x_1 \ x_2)$ with $\beta_1 x_1 + \beta_2 x_2 \ge \beta_0$ are in the class *c*.

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier
- Points $(x_1 \ x_2)$ with $\beta_1 x_1 + \beta_2 x_2 \ge \beta_0$ are in the class *c*.
- Points $(x_1 x_2)$ with $\beta_1 x_1 + \beta_2 x_2 < \beta_0$ are in the complement class \overline{c} .

A linear classifier in 3D is a plane described by the equation
B x + B x + B x = B

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

 A linear classifier in 3D is a plane described by the equation

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

 Example for a 3D linear classifier

 A linear classifier in 3D is a plane described by the equation

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

- Example for a 3D linear classifier
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge \beta_0$ are in the class *c*.

 A linear classifier in 3D is a plane described by the equation

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

- Example for a 3D linear classifier
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge \beta_0$ are in the class *c*.
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 < \beta_0$ are in the complement class \overline{c} .