Support Vector Machines

Data Science: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM TOM MITCHELL, ERIC XING, AND LAUREN HANNAH

Roadmap

- Classification: machines labeling data for us
- Previously: logistic regression
- This time: SVMs
- (another) example of linear classifier
- State-of-the-art classification
- Good theoretical properties

Thinking Geometrically

- Suppose you have two classes: vacations and sports
- Suppose you have four documents

Sports

Doc $_{1}:$ \{ball, ball, ball, travel\}
Doc_{2} : \{ball, ball\}

Vacations

Doc_{3} : \{travel, ball, travel\}
$\mathrm{Doc}_{4}:\{$ travel\}

- What does this look like in vector space?

Put the documents in vector space
Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 10,000 s of dimensions and more
- How can we do classification in this space?

Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Classes in the vector space

Classes in the vector space

Should the document \star be assigned to China, UK or Kenya?

Classes in the vector space

Find separators between the classes

Classes in the vector space
-
。

- \diamond
-
-

*
-

UK

Find separators between the classes

Classes in the vector space

Based on these separators: \star should be assigned to China

Classes in the vector space

How do we find separators that do a good job at classifying new documents like \star ? - Main topic of today

Linear classifiers

- Definition:
- A linear classifier computes a linear combination or weighted sum $\sum_{i} \beta_{i} x_{i}$ of the feature values.
- Classification decision: $\sum_{i} \beta_{i} x_{i}>\beta_{0}$? (β_{0} is our bias)
- \ldots where β_{0} (the threshold) is a parameter.
- We call this the separator or decision boundary.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are linearly separable.

Linear classifiers

- Definition:
- A linear classifier computes a linear combination or weighted sum $\sum_{i} \beta_{i} x_{i}$ of the feature values.
- Classification decision: $\sum_{i} \beta_{i} x_{i}>\beta_{0}$? (β_{0} is our bias)
- \ldots where β_{0} (the threshold) is a parameter.
- We call this the separator or decision boundary.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are linearly separable.
- Before, we just talked about equations. What's the geometric intuition?

A linear classifier in 1D

- A linear classifier in 1D is a point x described by the equation $\beta_{1} x_{1}=\beta_{0}$

A linear classifier in 1D
\qquad - A linear classifier in 1D is a point x described by the equation $\beta_{1} x_{1}=\beta_{0}$

- $x=\beta_{0} / \beta_{1}$

A linear classifier in 1D

- A linear classifier in 1D is a point x described by the equation $\beta_{1} x_{1}=\beta_{0}$
- $x=\beta_{0} / \beta_{1}$
- Points $\left(x_{1}\right)$ with $\beta_{1} x_{1} \geq \beta_{0}$ are in the class c.

A linear classifier in 1D

- A linear classifier in 1D is a point x described by the equation $\beta_{1} x_{1}=\beta_{0}$
- $x=\beta_{0} / \beta_{1}$
- Points $\left(x_{1}\right)$ with $\beta_{1} x_{1} \geq \beta_{0}$ are in the class c.
- Points $\left(x_{1}\right)$ with $\beta_{1} x_{1}<\beta_{0}$ are in the complement class \bar{c}.

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}=\beta_{0}$

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}=\beta_{0}$
- Example for a 2D linear classifier

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}=\beta_{0}$
- Example for a 2D linear classifier
- Points $\left(x_{1} x_{2}\right)$ with $\beta_{1} x_{1}+\beta_{2} x_{2} \geq \beta_{0}$ are in the class c.

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}=\beta_{0}$
- Example for a 2D linear classifier
- Points $\left(x_{1} x_{2}\right)$ with $\beta_{1} x_{1}+\beta_{2} x_{2} \geq \beta_{0}$ are in the class c.
- Points $\left(x_{1} x_{2}\right)$ with $\beta_{1} x_{1}+\beta_{2} x_{2}<\beta_{0}$ are in the complement class \bar{c}.

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the

$$
\begin{aligned}
& \text { equation } \\
& \beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=\beta_{0}
\end{aligned}
$$

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=\beta_{0}$
- Example for a 3D linear classifier

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=\beta_{0}$
- Example for a 3D linear classifier
- Points $\left(x_{1} x_{2} x_{3}\right)$ with
$\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \geq \beta_{0}$ are in the class c.

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=\beta_{0}$
- Example for a 3D linear classifier
- Points $\left(x_{1} x_{2} x_{3}\right)$ with
$\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \geq \beta_{0}$ are in the class c.
- Points $\left(x_{1} x_{2} x_{3}\right)$ with $\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}<\beta_{0}$ are in the complement class \bar{c}.

