

Annotation and Feature Engineering

Data Science: Jordan Boyd-Graber University of Maryland HOUSES, SPOILERS, AND TRIVIA

TV Tropes

- Social media site
- Catalog of "tropes"
- Functionally like Wikipedia, but ...
 - Less formal
 - No notability requirement
 - Focused on popular culture

Absent-Minded Professor

- "Doc" Emmett Brown from <u>Back to</u> the Future.
- The drunk mathematician in <u>Strangers on a Train</u> becomes a plot point, because of his forgetfulness, Guy is suspected of a murder he didn't commit.
- <u>The Muppet Show</u>: Dr. Bunsen Honeydew.

Spoilers

- What makes neat is that the dataset is annotated by users for spoilers.
- A spoiler: "A published piece of information that divulges a surprise, such as a plot twist in a movie."

Spoiler

- Han Solo arriving just in time to save Luke from Vader and buy Luke the vital seconds needed to send the proton torpedos into the Death Star's thermal exhaust port.
- Leia, after finding out that despite her (feigned) cooperation, Tarkin intends to destroy Alderaan anyway.
- Luke rushes to the farm, only to find it already raided and his relatives dead harkens to an equally distressing scene in The Searchers.

Not a spoiler

- Diving into the garbage chute gets them out of the firefight, but the droids have to save them from the compacter.
- They do some pretty evil things with that Death Star, but we never hear much of how they affect the rest of the Galaxy. A deleted scene between Luke and Biggs explores this somewhat.
- Luke enters Leia's cell in a Stormtrooper uniform, and she calmly starts some banter.

The dataset

- Downloaded the pages associated with a show. Took complete sentences from the text and split them into ones with spoilers and those without
- Created a balanced dataset (50% spoilers, 50% not)
- Split into training, development, and test shows

The dataset

- Downloaded the pages associated with a show. Took complete sentences from the text and split them into ones with spoilers and those without
- Created a balanced dataset (50% spoilers, 50% not)
- Split into training, development, and test shows
 - Why is this important?

The dataset

- Downloaded the pages associated with a show. Took complete sentences from the text and split them into ones with spoilers and those without
- Created a balanced dataset (50% spoilers, 50% not)
- Split into training, development, and test shows
 - Why is this important?
- I'll show results using SVM; similar results apply to other classifiers

Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: "These aren't the droids you're looking for."

Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: "These aren't the droids you're looking for."

Features

These:1 aren:1 t:1 the:1 droids:1 you:1 re:1 looking:1 for:1

	False	True		
False	56	34		
True	583	605		
Accuracy: 0.517				

Step 1: The obvious

- Take every sentence, and split on on-characters.
- Input: "These aren't the droids you're looking for."

Features

These:1 aren:1 t:1 the:1 droids:1 you:1 re:1 looking:1 for:1

What's wrong with this?

	False	True		
False	56	34		
True	583	605		
Accuracy: 0.517				

Step 2: Normalization

- Normalize the words
 - Lowercase everything
 - Stem the words (not always a good idea!)
- Input: "These aren't the droids you're looking for."

Step 2: Normalization

Normalize the words

- Lowercase everything
- Stem the words (not always a good idea!)
- Input: "These aren't the droids you're looking for."

Features

these:1 are:1 t:1 the:1 droid:1 you:1 re:1 look:1 for:1

	False	True		
False	52	27		
True	587	612		
Accuracy: 0.520				

Step 3: Remove Usless Features

- Use a "stoplist"
- Remove features that appear in > 10% of observations (and aren't correlated with label)
- Input: "These aren't the droids you're looking for."

Step 3: Remove Usless Features

- Use a "stoplist"
- Remove features that appear in > 10% of observations (and aren't correlated with label)
- Input: "These aren't the droids you're looking for."

			False	True	
Features		False	59	20	
droid:1 look:1	-	True	578	621	
		Accuracy: 0.532			

I – I – I –

Step 4: Add Useful Features

- Use bigrams ("these_are") instead of unigrams ("these", "are")
- Creates a lot of features!
- Input: "These aren't the droids you're looking for."

Step 4: Add Useful Features

- Use bigrams ("these_are") instead of unigrams ("these", "are")
- Creates a lot of features!
- Input: "These aren't the droids you're looking for."

F				

these_are:1 aren_t:1 t_the:1 the_droids:1 you_re:1 re_looking:1 looking_for:1

	False	True		
False	203	104		
True	436	535		
Accuracy: 0.578				

Step 5: Prune (Again)

- Not all bigrams appear often
- SVM has to search a long time and might not get to the right answer
- Helps to prune features
- Input: "These aren't the droids you're looking for."

Step 5: Prune (Again)

- Not all bigrams appear often
- SVM has to search a long time and might not get to the right answer
- Helps to prune features
- Input: "These aren't the droids you're looking for."

Features		False	True	
T eatures	False	410	276	1
these_are:1 the_droids:1	True	229	363	
re_looking:1 looking_for:1	Accuracy: 0.605			

1

τ.

1

How do you find new features?

- Make predictions on the development set.
- Look at contingency table; where are the errors?
- What do you miss?

How do you find new features?

- Make predictions on the development set.
- Look at contingency table; where are the errors?
- What do you miss? Error analysis!
- What feature would the classifier need to get this right?
- What features are confusing the classifier?
 - If it never appears in the development set, it isn't useful
 - If it doesn't appear often, it isn't useful

How do you know something is a good feature?

- Make a contingency table / scatter plot for that feature (should give you good information gain and be random)
- Throw it into your classifier (accuracy should improve)