

Logistic Regression

Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM HINRICH SCHÜTZE

What are we talking about?

- Statistical classification: p(y|x)
- y is typically a Bernoulli or multinomial outcome
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y=0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(1)
$$P(Y=1|X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(2)

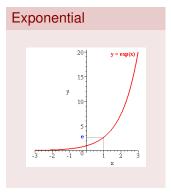
For shorthand, we'll say that

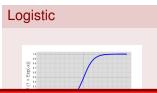
$$P(Y=0|X) = \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(3)

$$P(Y=1|X) = 1 - \sigma(\beta_0 + \sum_i \beta_i X_i)$$
(4)

• Where $\sigma(z) = \frac{1}{1 + exp[-z]}$

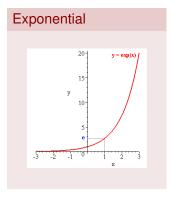
What's this "exp" doing?

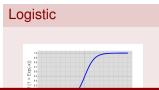




- exp[x] is shorthand for e^x
- *e* is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp" doing?





- exp[x] is shorthand for e^x
- *e* is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 1: Empty Document? X = {}

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_{2}	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} =$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} =$$

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$$

Bias β₀ encodes the prior probability of a class

feature	coefficient	weight	
bias	β_0	0.1	
"viagra"	eta_1	2.0	
"mother"	β_2	-1.0	
"work"	eta_3	-0.5	
"nigeria"	eta_4	3.0	

Example 2	
$X = \{Mother, Nigeria\}$	

• What does Y = 1 mean?

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.11$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = 0.88$$

Include bias, and sum the other weights

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3
$X = \{Mother, Work, Viagra, Mother\}$

• What does Y = 1 mean?

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

$$X = \{Mother, Work, Viagra, Mother\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]}$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

 Multiply feature presence by weight

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

$$X = \{Mother, Work, Viagra, Mother\}$$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.60$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.30$$

 Multiply feature presence by weight