Linear Regression

Data Science: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM LAUREN HANNAH

Linear Regression

Data are the set of inputs and outputs, $\mathscr{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

Linear Regression

In linear regression, the goal is to predict y from x using a linear function

Linear Regression

Examples of linear regression:

- given a child's age and gender, what is his/her height?
- given unemployment, inflation, number of wars, and economic growth, what will the president's approval rating be?
- given a browsing history, how long will a user stay on a page?

Linear Regression

Multiple Covariates

Often, we have a vector of inputs where each represents a different feature of the data

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)
$$

The function fitted to the response is a linear combination of the covariates

$$
f(\mathbf{x})=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}
$$

Multiple Covariates

- Often, it is convenient to represent \mathbf{x} as $\left(1, x_{1}, \ldots, x_{p}\right)$
- In this case \mathbf{x} is a vector, and so is β (we'll represent them in bold face)
- This is the dot product between these two vectors
- This then becomes a sum (this should be familiar!)

$$
\beta \mathbf{x}=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}
$$

Hyperplanes: Linear Functions in Multiple Dimensions
Hyperplane

Covariates

- Do not need to be raw value of x_{1}, x_{2}, \ldots
- Can be any feature or function of the data:
- Transformations like $x_{2}=\log \left(x_{1}\right)$ or $x_{2}=\cos \left(x_{1}\right)$
- Basis expansions like $x_{2}=x_{1}^{2}, x_{3}=x_{1}^{3}, x_{4}=x_{1}^{4}$, etc
- Indicators of events like $x_{2}=1_{\left\{-1 \leq x_{1} \leq 1\right\}}$
- Interactions between variables like $x_{3}=x_{1} x_{2}$
- Because of its simplicity and flexibility, it is one of the most widely implemented regression techniques

Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates
- We just find the point on the line that corresponds to the new input:

$$
\begin{equation*}
\hat{y}=\beta_{0}+\beta_{1} x \tag{1}
\end{equation*}
$$

Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates
- We just find the point on the line that corresponds to the new input:

$$
\begin{equation*}
\hat{y}=\beta_{0}+\beta_{1} x \tag{1}
\end{equation*}
$$

Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates
- We just find the point on the line that corresponds to the new input:

$$
\begin{equation*}
\hat{y}=1.0+0.5 x \tag{1}
\end{equation*}
$$

Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates
- We just find the point on the line that corresponds to the new input:

$$
\begin{equation*}
\hat{y}=1.0+0.5 * 5 \tag{1}
\end{equation*}
$$

Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates
- We just find the point on the line that corresponds to the new input:

$$
\begin{equation*}
\hat{y}=3.5 \tag{1}
\end{equation*}
$$

Example: Old Faithful

Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption given the duration of the current eruption

