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By the end of today . . .

� You’ll be able to frame many standard nlp tasks as classification
problems

� Apply logistic regression (given weights) to classify data

� Learn naïve bayes from data
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Classification

Formal definition of Classification

Given:
� A universe X our examples can come from (e.g., English documents

with a predefined vocabulary)

� Examples are represented in this space. (e.g., each document has some
subset of the vocabulary; more in a second)

� A fixed set of classes C= {c1,c2, . . . ,cJ}
� The classes are human-defined for the needs of an application (e.g., spam

vs. ham).
� A training set D of labeled documents with each labeled document

d ∈X×C

Using a learning method or learning algorithm, we then wish to learn a
classifier γ that maps documents to classes:

γ :X→C
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Classification

Topic classification
Topic classification

classes:

training
set:

test
set:

“regions” “industries” “subject areas”

γ(d ′) = China

“first”
“private”
“Chinese”
“airline”

UK China poultry coffee elections sports

“London”

“congestion”

“Big Ben”

“Parliament”

“the Queen”

“Windsor”

“Beijing”

“Olympics”

“Great Wall”

“tourism”

“communist”

“Mao”

“chicken”

“feed”

“ducks”

“pate”

“turkey”

“bird flu”

“beans”

“roasting”

“robusta”

“arabica”

“harvest”

“Kenya”

“votes”

“recount”

“run-off”

“seat”

“campaign”

“TV ads”

“baseball”

“diamond”

“soccer”

“forward”

“captain”

“team”

d ′
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Classification

Examples of how search engines use classification

� Standing queries (e.g., Google Alerts)

� Language identification (classes: English vs. French etc.)

� The automatic detection of spam pages (spam vs. nonspam)

� The automatic detection of sexually explicit content (sexually explicit vs.
not)

� Sentiment detection: is a movie or product review positive or negative
(positive vs. negative)

� Topic-specific or vertical search – restrict search to a “vertical” like
“related to health” (relevant to vertical vs. not)
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Classification

Classification methods: 1. Manual

� Manual classification was used by Yahoo in the beginning of the web.
Also: ODP, PubMed

� Very accurate if job is done by experts

� Consistent when the problem size and team is small

� Scaling manual classification is difficult and expensive.

� →We need automatic methods for classification.
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Classification

Classification methods: 2. Rule-based

� There are “IDE” type development enviroments for writing very complex
rules efficiently. (e.g., Verity)

� Often: Boolean combinations (as in Google Alerts)

� Accuracy is very high if a rule has been carefully refined over time by a
subject expert.

� Building and maintaining rule-based classification systems is expensive.
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Classification

Classification methods: 3. Statistical/Probabilistic

� As per our definition of the classification problem – text classification as
a learning problem

� Supervised learning of a the classification function γ and its application
to classifying new documents

� We will look at a couple of methods for doing this: Naive Bayes, Logistic
Regression, SVM, Decision Trees

� No free lunch: requires hand-classified training data

� But this manual classification can be done by non-experts.
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Logistic Regression

Generative vs. Discriminative Models

� Goal, given observation x , compute probability of label y , p(y |x)
� Naïve Bayes (later) uses Bayes rule to reverse conditioning

� What if we care about p(y |x)? We need a more general framework . . .

� That framework is called logistic regression (later)

� Naïve Bayes is a special case of logistic regression
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Motivating Naïve Bayes Example

A Classification Problem

� Suppose that I have two coins, C1 and C2

� Now suppose I pull a coin out of my pocket, flip it a bunch of times,
record the coin and outcomes, and repeat many times:

C1: 0 1 1 1 1
C1: 1 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
C2: 0 0 1 1 0 1
C2: 1 0 0 0

� Now suppose I am given a new sequence, 0 0 1; which coin is it
from?
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Motivating Naïve Bayes Example

A Classification Problem

This problem has particular challenges:

� different numbers of covariates for each observation

� number of covariates can be large

However, there is some structure:

� Easy to get P(C1), P(C2)

� Also easy to get P(Xi = 1 |C1) and P(Xi = 1 |C2)

� By conditional independence,

P(X = 010 |C1) = P(X1 = 0 |C1)P(X2 = 1 |C1)P(X2 = 0 |C1)

� Can we use these to get P(C1 |X = 001)?
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Motivating Naïve Bayes Example

A Classification Problem

Summary: have P(data |class), want P(class |data)

Solution: Bayes’ rule!

P(class |data) =
P(data |class)P(class)

P(data)

=
P(data |class)P(class)
∑C

class=1 P(data |class)P(class)

To compute, we need to estimate P(data |class), P(class) for all classes
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Motivating Naïve Bayes Example

Naive Bayes Classifier

This works because the coin flips are independent given the coin
parameter. What about this case:

� want to identify the type of fruit given a set of features: color, shape and
size

� color: red, green, yellow or orange (discrete)

� shape: round, oval or long+skinny (discrete)

� size: diameter in inches (continuous)
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily
independent:

Given category “apple,” the color “green” has a higher probability given
“size < 2”:

P(green |size< 2, apple)> P(green |apple)
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Using chain rule,

P(apple |green, round ,size = 2)

=
P(green, round ,size = 2 |apple)P(apple)
∑

fruits P(green, round ,size = 2 | fruit j)P(fruit j)

∝ P(green | round ,size = 2,apple)P(round |size = 2,apple)

×P(size = 2 |apple)P(apple)

But computing conditional probabilities is hard! There are many
combinations of (color ,shape,size) for each fruit.
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

P(green | round ,size = 2,apple) = P(green |apple)

P(round |green,size = 2,apple) = P(round |apple)

P(size = 2 |green, round ,apple) = P(size = 2 |apple)
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Naive Bayes Definition

The Naive Bayes classifier

� The Naive Bayes classifier is a probabilistic classifier.
� We compute the probability of a document d being in a class c as

follows:

P(c|d)∝ P(c)
∏

1≤i≤nd

P(wi |c)

� nd is the length of the document. (number of tokens)
� P(wi |c) is the conditional probability of term wi occurring in a document

of class c
� P(wi |c) as a measure of how much evidence wi contributes that c is the

correct class.
� P(c) is the prior probability of c.
� If a document’s terms do not provide clear evidence for one class vs.

another, we choose the c with higher P(c).
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Naive Bayes Definition

Maximum a posteriori class

� Our goal is to find the “best” class.

� The best class in Naive Bayes classification is the most likely or
maximum a posteriori (MAP) class c map :

c map = argmax
cj∈C

P̂(cj |d) = argmax
cj∈C

P̂(cj)
∏

1≤i≤nd

P̂(wi |cj)

� We write P̂ for P since these values are estimates from the training set.
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Naive Bayes Definition

Naive Bayes Classifier

Why conditional independence?

� estimating multivariate functions (like P(X1, . . . ,Xm |Y )) is
mathematically hard, while estimating univariate ones is easier (like
P(Xi |Y ))

� need less data to fit univariate functions well

� univariate estimators differ much less than multivariate estimator (low
variance)

� ... but they may end up finding the wrong values (more bias)
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Naive Bayes Definition

Naïve Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, recall the Naive
Bayes conditional independence assumption:

P(d |cj) = P(〈w1, . . . ,wnd
〉|cj) =
∏

1≤i≤nd

P(Xi =wi |cj)

We assume that the probability of observing the conjunction of attributes is
equal to the product of the individual probabilities P(Xi =wi |cj).
Our estimates for these priors and conditional probabilities: P̂(cj) =

Nc+1
N+|C|

and P̂(w |c) = Tcw+1
(
∑

w′∈V Tcw′)+|V |
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Naive Bayes Definition

Implementation Detail: Taking the log

� Multiplying lots of small probabilities can result in floating point
underflow.

� From last time lg is logarithm base 2; ln is logarithm base e.

lgx = a⇔ 2a = x lnx = a⇔ ea = x (1)

� Since ln(xy) = ln(x)+ ln(y), we can sum log probabilities instead of
multiplying probabilities.

� Since ln is a monotonic function, the class with the highest score does
not change.

� So what we usually compute in practice is:

c map = argmax
cj∈C

[P̂(cj)
∏

1≤i≤nd

P̂(wi |cj)]

argmax
cj∈C

[ ln P̂(cj)+
∑

1≤i≤nd

ln P̂(wi |cj)]
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Naive Bayes Definition

Contrasting Naïve Bayes and Logistic Regression

� Naïve Bayes easier

� Naïve Bayes better on smaller datasets

� Logistic regression better on medium-sized datasets
� On huge datasets, it doesn’t really matter (data always win)
� Optional reading by Ng and Jordan has proofs and experiments

� Logistic regression allows arbitrary features (biggest difference!)
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