

Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, 2018

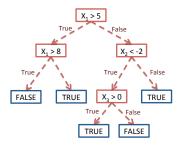
Roadmap

- Classification: machines labeling data for us
- Last time: naïve Bayes
- This time:
 - Decision Trees
 - Simple, nonlinear, interpretable
 - Discussion: Which classifier should I use for my problem?

Trees

Suppose that we want to construct a set of rules to represent the data

- can represent data as a series of if-then statements
- here, "if" splits inputs into two categories
- "then" assigns value
- when "if" statements are nested, structure is called a tree

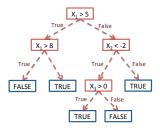


Trees

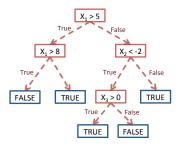
Ex: data (X_1, X_2, X_3, Y) with X_1, X_2, X_3 are real, Y Boolean

First, see if $X_1 > 5$:

- if TRUE, see if X₁ > 8
 if TRUE, return FALSE
 if FALSE, return TRUE
- if FALSE, see if X₂ < -2
 - if TRUE, see if $X_3 > 0$
 - if TRUE, return TRUE
 - if FALSE, return FALSE
 - □ if FALSE, return TRUE



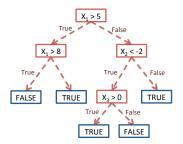
Trees



Example 1: $(X_1, X_2, X_3) = (1, 1, 1)$

Example 2:
$$(X_1, X_2, X_3) = (10, -3, 0)$$

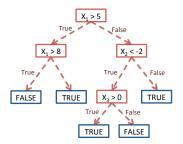
Trees



Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2:
$$(X_1, X_2, X_3) = (10, -3, 0)$$

Trees



Example 1: $(X_1, X_2, X_3) = (1, 1, 1) \rightarrow \text{TRUE}$

Example 2: $(X_1, X_2, X_3) = (10, -3, 0) \rightarrow \text{FALSE}$

Trees

Terminology:

- branches: one side of a split
- leaves: terminal nodes that return values

Why trees?

- trees can be used for regression or classification
 - regression: returned value is a real number
 - classification: returned value is a class
- unlike linear regression, SVMs, naive Bayes, etc, trees fit local models
 - □ in large spaces, global models may be hard to fit
 - results may be hard to interpret
- fast, interpretable predictions

Example: Predicting Electoral Results

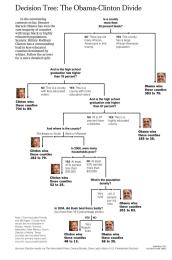
2008 Democratic primary:

- Hillary Clinton
- Barack Obama

Given historical data, how will a count vote?

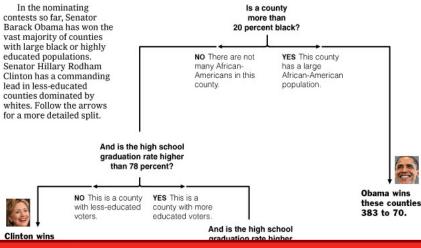
- can extrapolate to state level data
- might give regions to focus on increasing voter turnout
- would like to know how variables interact

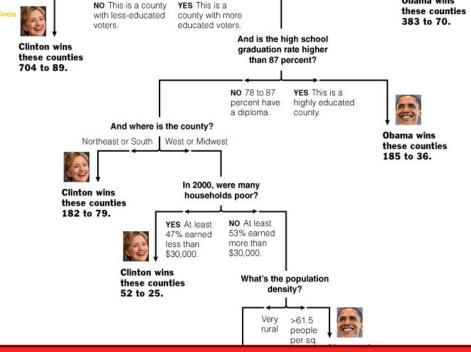
Example: Predicting Electoral Results

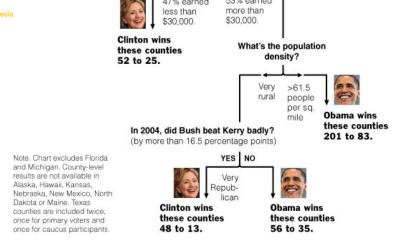


Example: Predicting Electoral Results

Decision Tree: The Obama-Clinton Divide







Sources: Election results via The Associated Press; Census Bureau; Dave Leip's Atlas of U.S. Presidential Elections

AMANDA COX/ THE NEW YORK TIMES

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent as a function of X, Y:

- X AND Y (both must be true)
- X OR Y (either can be true)
- X XOR Y (one and only one is true)

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

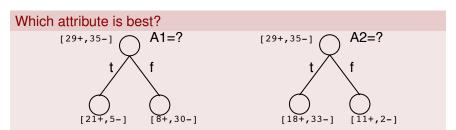
Examples:

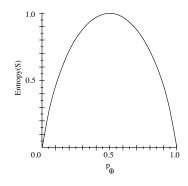
- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

Main loop:

- 1. A ← the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes





- S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in *S*
- p_{\ominus} is the proportion of negative examples in *S*
- Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

How spread out is the distribution of S:

$$p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus})$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

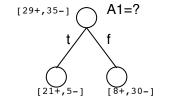
Information Gain

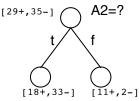
Α

Which feature *A* would be a more useful rule in our decision tree? Gain(S, A) = expected reduction in entropy due to sorting on

. . .

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$





$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) =$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right) = 0.96$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right)$$
$$= 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right] \\ -\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right] \\ =$$

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right)$$
$$= 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$- \frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

Learning Decision Trees

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right)$$
$$= 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$-\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

$$Gain(S, A_2) = 0.96 - \frac{51}{64} \left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right] \\ -\frac{13}{64} \left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right] \\ =$$

Learning Decision Trees

$$H(S) = -\frac{29}{54} \lg \left(\frac{29}{54}\right) - \frac{35}{64} \lg \left(\frac{35}{64}\right)$$
$$= 0.96$$

$$Gain(S, A_1) = 0.96 - \frac{26}{64} \left[-\frac{5}{26} \lg \left(\frac{5}{26} \right) - \frac{21}{26} \lg \left(\frac{21}{26} \right) \right]$$
$$-\frac{38}{64} \left[-\frac{8}{38} \lg \left(\frac{8}{38} \right) - \frac{30}{38} \lg \left(\frac{30}{38} \right) \right]$$
$$= 0.96 - 0.28 - 0.44 = 0.24$$

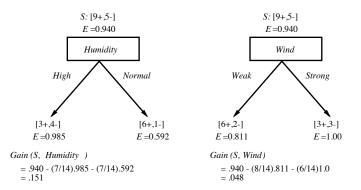
$$Gain(S, A_2) = 0.96 - \frac{51}{64} \left[-\frac{18}{51} \lg \left(\frac{18}{51} \right) - \frac{33}{51} \lg \left(\frac{33}{51} \right) \right]$$
$$- \frac{13}{64} \left[-\frac{11}{13} \lg \left(\frac{11}{13} \right) - \frac{2}{13} \lg \left(\frac{2}{13} \right) \right]$$
$$= 0.96 - 0.75 - 0.13 = 0.08$$

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Which attribute is the best classifier?



ID3 Algorithm

- Start at root, look for best attribute
- Repeat for subtrees at each attribute outcome
- Stop when information gain is below a threshold
- Bias: prefers shorter trees (Occam's Razor)
 - \rightarrow a short hyp that fits data unlikely to be coincidence
 - \rightarrow a long hyp that fits data might be coincidence
 - Prevents overfitting (more later)

Text classification

- Many commercial applications
- There are many applications of text classification for corporate Intranets, government departments, and Internet publishers.
- Often greater performance gains from exploiting domain-specific text features than from changing from one machine learning method to another.
- Representing features is often a big challenge (e.g., zero mean, standard variance)

- None?
- Very little?
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little?
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount?
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount? SVM (later)
- A huge amount

- None? Hand write rules or use active learning
- Very little? Naïve Bayes
- A fair amount? SVM (later)
- A huge amount Doesn't matter, use whatever works

Recap

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?
 - For an unstable problem, it's better to use a simple and robust classifier.