Probability Distributions: Multinomial and Poisson

Data Science: Jordan Boyd-Graber
University of Maryland
JANUARY 21, 2018
Multinomial distribution

- Recall: the binomial distribution is the number of successes from multiple Bernoulli success/fail events
- The **multinomial** distribution is the number of different outcomes from multiple categorical events
 - It is a generalization of the binomial distribution to more than two possible outcomes
 - As with the binomial distribution, each categorical event is assumed to be independent
 - **Bernoulli** : **binomial** :: **categorical** : **multinomial**
- Examples:
 - The number of times each face of a die turned up after 50 rolls
 - The number of times each suit is drawn from a deck of cards after 10 draws
Multinomial distribution

- Notation: let \(\vec{X} \) be a vector of length \(K \), where \(X_k \) is a random variable that describes the number of times that the \(k \)th value was the outcome out of \(N \) categorical trials.
 - The possible values of each \(X_k \) are integers from 0 to \(N \)
 - All \(X_k \) values must sum to \(N \): \(\sum_{k=1}^{K} X_k = N \)

- Example: if we roll a die 10 times, suppose it comes up with the following values:

 \[
 \vec{X} = (1, 0, 3, 2, 1, 3)
 \]

 - \(X_1 = 1 \)
 - \(X_2 = 0 \)
 - \(X_3 = 3 \)
 - \(X_4 = 2 \)
 - \(X_5 = 1 \)
 - \(X_6 = 3 \)

- The multinomial distribution is a joint distribution over multiple random variables: \(P(X_1, X_2, \ldots, X_K) \)
Multinomial distribution

- Suppose we roll a die 3 times. There are 216 (6^3) possible outcomes:

\[
P(111) = P(1)P(1)P(1) = 0.00463 \\
P(112) = P(1)P(1)P(2) = 0.00463 \\
P(113) = P(1)P(1)P(3) = 0.00463 \\
P(114) = P(1)P(1)P(4) = 0.00463 \\
P(115) = P(1)P(1)P(5) = 0.00463 \\
P(116) = P(1)P(1)P(6) = 0.00463 \\
\ldots \ldots \ldots \\
P(665) = P(6)P(6)P(5) = 0.00463 \\
P(666) = P(6)P(6)P(6) = 0.00463
\]

- What is the probability of a particular vector of counts after 3 rolls?
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: \(\vec{X} = <0, 1, 0, 0, 2, 0> \)
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\mathbf{X} = \langle 0, 1, 0, 0, 2, 0 \rangle$
 - $P(\mathbf{X}) = P(255) + P(525) + P(552) = 0.01389$
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\mathbf{X} = <0,1,0,0,2,0>$
 - $P(\mathbf{X}) = P(255) + P(525) + P(552) = 0.01389$
- Example 2: $\mathbf{X} = <0,0,1,1,1,0>$
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\mathbf{\tilde{X}} = \langle 0, 1, 0, 0, 2, 0 \rangle$
 - $P(\mathbf{\tilde{X}}) = P(255) + P(525) + P(552) = 0.01389$
- Example 2: $\mathbf{\tilde{X}} = \langle 0, 0, 1, 1, 1, 0 \rangle$
 - $P(\mathbf{\tilde{X}}) = P(345) + P(354) + P(435) + P(453) + P(534) + P(543) = 0.02778$
Multinomial distribution

- The probability mass function for the multinomial distribution is:

\[
f(\vec{x}) = \frac{N!}{\prod_{k=1}^{K} x_k!} \prod_{k=1}^{K} \theta_k^{x_k}
\]

- Generalization of binomial coefficient

- Like categorical distribution, multinomial has a \(K \)-length parameter vector \(\vec{\theta} \) encoding the probability of each outcome.

- Like binomial, the multinomial distribution has a additional parameter \(N \), which is the number of events.
Multinomial distribution: summary

- Categorical distribution is multinomial when $N = 1$.
- Sampling from a multinomial: same code repeated N times.
 - Remember that each categorical trial is independent.
 - Question: Does this mean the count values (i.e., each X_1, X_2, etc.) are independent?
Multinomial distribution: summary

- Categorical distribution is multinomial when $N = 1$.
- Sampling from a multinomial: same code repeated N times.
 - Remember that each categorical trial is independent.
 - Question: Does this mean the count values (i.e., each X_1, X_2, etc.) are independent?
 - No! If $N = 3$ and $X_1 = 2$, then X_2 can be no larger than 1 (must sum to N).
Multinomial distribution: summary

- Categorical distribution is multinomial when $N = 1$.
- Sampling from a multinomial: same code repeated N times.
 - Remember that each categorical trial is independent.
 - Question: Does this mean the count values (i.e., each X_1, X_2, etc.) are independent?
 - No! If $N = 3$ and $X_1 = 2$, then X_2 can be no larger than 1 (must sum to N).
- Remember this analogy:
 - Bernoulli : binomial :: categorical : multinomial
Poisson distribution

- We showed that the Bernoulli/binomial/categorical/multinomial are all related to each other
- Lastly, we will show something a little different
- The **Poisson** distribution gives the probability that an event will occur a certain number of times within a time interval
- Examples:
 - The number of goals in a soccer match
 - The amount of mail received in a day
 - The number of times a river will flood in a decade
Poisson distribution

- Let the random variable X refer to the count of the number of events over whatever interval we are modeling.
 - X can be any positive integer or zero: $\{0, 1, 2, \ldots\}$
- The probability mass function for the Poisson distribution is:
 $$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- The Poisson distribution has one parameter λ, which is the average number of events in an interval.
 - $\mathbb{E}[X] = \lambda$
Poisson distribution
Poisson distribution

- Example: Poisson is good model of World Cup match having a certain number of goals
- A World Cup match has an average of 2.5 goals scored: $\lambda = 2.5$

\[
P(X = 0) = \frac{2.5^0 e^{-2.5}}{0!} = \frac{e^{-2.5}}{1} = 0.082
\]

\[
P(X = 1) = \frac{2.5^1 e^{-2.5}}{1!} = \frac{2.5e^{-2.5}}{1} = 0.205
\]

\[
P(X = 2) = \frac{2.5^2 e^{-2.5}}{2!} = \frac{6.25e^{-2.5}}{2} = 0.257
\]

\[
P(X = 3) = \frac{2.5^3 e^{-2.5}}{3!} = \frac{15.625e^{-2.5}}{6} = 0.213
\]

\[
P(X = 4) = \frac{2.5^4 e^{-2.5}}{4!} = \frac{39.0625e^{-2.5}}{24} = 0.133
\]

\[
P(X = 10) = \frac{2.5^{10} e^{-2.5}}{10!} = \frac{9536.7432e^{-2.5}}{3628800} = 0.00022
\]

...