Data-Intensive Information Processing Applications — Session #2

Hadoop: Nuts and Bolts

Jordan Boyd-Graber
University of Maryland

Tuesday, February 10, 2011
Last Class

- Registration
- Sign up for mailing list
- Complete usage agreement (so you get on the cluster)
- Notecards
 - Difficult class
 - Real-world examples
- How to sort a list of numbers
Naive Way to Sort Numbers

- Mapper: Identity Mapper (just emit everything)
- Reducer: Output everything
- Postprocess: Merge results (why?)

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>15</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>65</td>
<td>35</td>
<td>89</td>
</tr>
<tr>
<td>97</td>
<td>79</td>
<td>323</td>
<td>8462</td>
</tr>
</tbody>
</table>

1 2 4 9 15 35 65 79 ...
Better Way to Sort Numbers

- Assume K reducers

- Sample small fraction of data to guess at K evenly spaced numbers ($p_1, p_2, p_3, p_4, \ldots p_{K-1}$)

- Create new partitioner(x)
 - $x < p_1$: reducer 1
 - $p_i \leq x < p_{i+1}$: reducer i
 - $p_K \leq x$: reducer K

- Concatenate output

- Sorted 1TB of data in 209 seconds (first OSS / Java win)
This class: Hadoop Programs

- Configuring / Setting up Jobs
- Representing Data
- What happens underneath
- How to write / test / debug Hadoop programs
Hadoop Programming

- Remember “strong Java programming” as pre-requisite?
- But this course is *not* about programming!
 - Focus on “thinking at scale” and algorithm design
 - We’ll expect you to pick up Hadoop (quickly) along the way
- How do I learn Hadoop?
 - This session: brief overview
 - White’s book
 - RTFM, RTFC(!)
Basic Hadoop API

- **Mapper**
 - `void map(K1 key, V1 value, Context context)`
 - `context.write(k, v)` – Used to emit intermediate results

- **Reducer/Combiner**
 - `void reduce(K2 key, Iterable<V2> values, Context context)`
 - `context.write(k, v)` – Used to emit results

- **Partitioner**
 - `int getPartition(K2 key, V2 value, int numPartitions)`
 - Returns the partition assignment

- **Job / Configuration**
 - Specifies the mappers / reducers / combiners / partitioners
 - Sets options (command line or from XML)
Data Types in Hadoop

Writable

- Defines a de/serialization protocol.
- Every data type in Hadoop is a Writable.

WritableComparable

- Defines a sort order. All keys must be of this type (but not values).

Concrete classes for different data types.

- IntWritable
- LongWritable
- Text
- ...

SequenceFiles

- Binary encoding of a sequence of key/value pairs
Where Can I Find Writables?

- Hadoop
- Cloud9: edu.umd.cloud9.io
 - Arrays
 - HashMap
 - Pairs
 - Tuples

Table 4-6, Writable wrapper classes for Java primitives

<table>
<thead>
<tr>
<th>Java primitive</th>
<th>Writable implementation</th>
<th>Serialized size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>BooleanWritable</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>ByteWritable</td>
<td>1</td>
</tr>
<tr>
<td>int</td>
<td>IntWritable</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>LongWritable</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>FloatWritable</td>
<td>4</td>
</tr>
<tr>
<td>int</td>
<td>WIntWritable</td>
<td>1–5</td>
</tr>
<tr>
<td>long</td>
<td>WLongWritable</td>
<td>1–9</td>
</tr>
</tbody>
</table>
“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, value);
Three Gotchas

- Avoid object creation, at all costs
- Execution framework reuses value in reducer (Clone)
- Passing parameters into mappers and reducers
 - DistributedCache for larger (static) data
 - Configuration object for smaller parameters (unit tests?)
Complex Data Types in Hadoop

- How do you implement complex data types?

 - The easiest way:
 - Encoded it as Text, e.g., \((a, b) = \text{“a:b”}\)
 - Use regular expressions to parse and extract data
 - Works, but pretty hack-ish

 - The hard way:
 - Define a custom implementation of `WritableComparable`
 - Must implement: `readFields`, `write`, `compareTo`, `hashCode`
 - Computationally efficient, but slow for rapid prototyping

- Alternatives:
 - `Cloud9` offers two other choices: Tuple and JSON
 - (Actually, not that useful in practice)
 - Google: Protocol Buffers
Protocol Buffers

- Developed by Google
- Now open source
- Arbitrary data types
- Compiled into language of your choice
 - Python
 - C++
 - Java
 - (Other languages by folks outside of Google)
- Data are represented by compact byte streams
Why use Protocol Buffers

- Ad hoc data types are under-specified
 - 10.2010
 - Is it a date?
 - A number?
 - A string?

- Reading in data is often CPU-bound
 - Parsing CSV / XML is faster with two CPUs than one
 - Note: goes against CS accepted wisdom

- Cross-platform
 - OS
 - Programming language

- Extensible

- Scales well (Google has multi-gigabyte protocol buffers)
Why not use Protocol Buffers

- Needs libraries to be installed for every language
- One additional thing to compile
- Not human readable
- Needs up front investment to design data structures (sometimes a good thing)
Protocol Buffers: Source

```java
package tutorial;
option java_package = "com.example.tutorial";
option java_outer_classname = "AddressBookProtos";

message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
  }
  message PhoneNumber {
    required string number = 1;
    optional PhoneType type = 2 [default = HOME];
  }
  repeated PhoneNumber phone = 4;
}
```

- **Metadata to generate Source code**
- **Name of protocol buffer**
- **Typed data**
- **Discrete data**
- **Sub-type definition**
- **Sub-type use**
Protobuffs in your favorite language

- Compile the source into code:

```java
package com.example.tutorial;

public final class AddressBookProtos {
    private AddressBookProtos() {}

    public static void registerAllExtensions(
        com.google.protobuf.ExtensionRegistry registry)
    {
    }

    public interface PersonOrBuilder {
...

    package com.example.tutorial;

    public static com.example.tutorial.AddressBookProtos.Person.PhoneNumber
        parseFrom(byte[] data)
        throws com.google.protobuf.InvalidProtocolBufferException {
        return newBuilder().mergeFrom(data).buildParsed();
    }

    public void writeTo(com.google.protobuf.CodedOutputStream output)
        throws java.io.IOException {
        getSerializedSize();
        if (((bitField0_ & 0x00000001) == 0x00000001)) {
            output.writeBytes(1, getNameBytes());
        }
        if (((bitField0_ & 0x00000002) == 0x00000002)) {
            output.writeInt32(2, id_);
        }
        if (((bitField0_ & 0x00000004) == 0x00000004)) {
            output.writeBytes(3, getEmailBytes());
        }
        ...
    }
```

- Get IO, serialization, type checking, and access for free
Steps for writing protocol buffer

- Design data structure
- Compile protocol buffer:
 `protoc addressbook.proto --java_out=. --cpp_out=. --python_out=.`
- Create source code using protocol buffers
- Compile your code, include PB library
- Deploy

```java
for (Person.PhoneNumber phoneNumber : person.getPhoneList()) {
    switch (phoneNumber.getType()) {
        case MOBILE:
            System.out.print("  Mobile phone #: ");
            break;
        case HOME:
            System.out.print("  Home phone #: ");
            break;
        case WORK:
            System.out.print("  Work phone #: ");
            break;
    }
}
```
Protocol Buffers – Moral

- Crossplatform method to store data
- Good support in MapReduce
 - Google: All messages assumed to be protocol buffers
 - Hadoop: Package called Elephant-Bird (Twitter)
- Use when
 - Not in control of the data you get
 - Writing in many different programming languages
 - Raw data need not be human readable
 - Complex projects
- Welcome and encouraged to use them for class (but not required)
Basic Cluster Components

- One of each:
 - Namenode (NN)
 - Jobtracker (JT)

- Set of each per slave machine:
 - Tasktracker (TT)
 - Datanode (DN)
Putting everything together…
Anatomy of a Job

- MapReduce program in Hadoop = Hadoop job
 - Jobs are divided into map and reduce tasks
 - An instance of running a task is called a task attempt
 - Multiple jobs can be composed into a workflow

- Job submission process
 - Client (i.e., driver program) creates a job, configures it, and submits it to job tracker
 - JobClient computes input splits (on client end)
 - Job data (jar, configuration XML) are sent to JobTracker
 - JobTracker puts job data in shared location, enqueues tasks
 - TaskTrackers poll for tasks
 - Off to the races…
Source: redrawn from a slide by Cloduera, cc-licensed
Input and Output

InputFormat:
- TextInputFormat
- KeyValueTextInputFormat
- SequenceFileInputFormat
- ...

OutputFormat:
- TextOutputFormat
- SequenceFileOutputFormat
- ...

Shuffle and Sort in Hadoop

- Probably the most complex aspect of MapReduce!

- **Map side**
 - Map outputs are buffered in memory in a circular buffer
 - When buffer reaches threshold, contents are “spilled” to disk
 - Spills merged in a single, partitioned file (sorted within each partition): combiner runs here

- **Reduce side**
 - First, map outputs are copied over to reducer machine
 - “Sort” is a multi-pass merge of map outputs (happens in memory and on disk): combiner runs here
 - Final merge pass goes directly into reducer
Hadoop Workflow

1. Load data into HDFS
2. Develop code locally
3. Submit MapReduce job
 3a. Go back to Step 2
4. Retrieve data from HDFS
Debugging Hadoop

- First, take a deep breath
- Start small, start locally
- Unit tests

Strategies
- Learn to use the webapp
- Where does println go?
- Don’t use println, use logging
- Throw RuntimeExceptions
Start Small, Local

- Many mappers can be written as an Iterable
- Test the iterator locally on known input to make sure the right intermediates are generated
- Double check using an identity reducer (again, locally)
- Test reducer locally againsts Iterable output
- Run on cluster on moderate data, debug again
Unit Tests

- Whole courses / books on test-driven design

- Basic Idea
 - Write tests of what you expect the code will produce
 - Unit test frameworks (like JUnit) run those tests for you
 - These tests should always pass! (Eclipse can force you)

- Write tests ASAP
 - Catch problems early
 - Ensure tests fail
 - Modular design to your code (good for many reasons)

- Write new tests for every bug discovered

- Only Jeff Dean, Chuck Norris, and Brian Kernighan write perfect code
@Before
public void setUp() {
 mapper = new TransProbMapper();
 driver = new MapDriver<LongWritable, Text, PairOfStrings, FloatWritable>(mapper);
}

@Test
public void testOneWord() {
 List<Pair<PairOfStrings, FloatWritable>> out = null;
 try {
 out = driver.withInput(new LongWritable(0), new Text("evil::mal")).run();
 } catch (IOException ioe) {
 fail();
 }

 List<Pair<PairOfStrings, FloatWritable>> expected = new ArrayList<Pair<PairOfStrings, FloatWritable>>();
 expected.add(new Pair<PairOfStrings, FloatWritable>(new PairOfStrings("evil", "mal"), EXPECTED_COUNT));
 expected.add(new Pair<PairOfStrings, FloatWritable>(new PairOfStrings("evil", "*"), EXPECTED_COUNT));

 assertListEquals(expected, out);
}
Recap

- Hadoop data types
- Anatomy of a Hadoop job
- Hadoop jobs, end to end
- Software development workflow
Questions?