Building and Administering
Hadoop Clusters

21 April 2011
Jordan Boyd-Graber

\QBRSITP

ol COLLEGE OF
@ INFORMATION
“args STUDIES

Administrivia

Homework 5 graded

Homework 6 due soon

Keep working on projects!

e Final next week (will take better of midterm of final)
e Will have food for final class, May 5 (RSVP)

e Project writeup due May 10

Roadmap

e Choosing hardware / platform
e Getting a single node up and running
e Managing a running cluster
o Caches, Buffers, and Backups
o Scheduling Policies
e Adding nodes

Caveats and Context

e Why talk about this now?
e Even if you never have to worry about it, it helps you
understand the underlying process
e | am not an expert in running Hadoop clusters
e However ...
o Have seen multiple clusters in operation
o Involved in setting up Maryland's
o Suggestions culled from multiple sources
o Have run these tips by people who do admin (but too
shy / lazy to talk to you)
e Your mileage may vary ... be sure to vet tweaks

What Machines to Buy

e Get beefy consumer-grade machines

e Get components that you can replace for the next 4-8 years

e |f you want homogenous hardware, buy expensive now, and
have costs descend as you scale out over time

e UMIACS Bespin cluster:

o Data nodes: HCGIl/Ingram-Micro SuperMicro 2U quad-
server enclosure with each server equipped with 2 quad-
core 2.4Ghz Opteron Processors, 24GB of memory, and
three 2TB SATA Drives.

o Name nodes: PowerEdge R610 with dual 2.66 Ghz
processors, 48GB of memory (6x4GB) , two mirrored
500GB 7200 rpm 2.5inch sata drives, and redundant
power supplies with an idrac enterprise.

Do you even want to buy machines?

e Amazon Elastic Compute Cloud (Amazon EC2)
e Part of Amazon Web Services (AWS)
e Rent machines for $0.10 / machine hour to $2 / machine
nour (depending on CPU / memory)
e Who's using it
o Autodesk, Washington Post, Reddit
o Foursquare, Quora, Amazon
e Pros
o Don't pay for support, electricity
o Seamless "upgrades”
e Cost
o Not as cost-effective as running your own cluster 24/7
m \Who does?
o Less control

Creating and Using a Hadoop Cluster
on EC2

e Install Hadoop on a local machine
e Edit hadoop/src/contrib/ec2/bin/hadoop-ec2-env.shl’
o Add AWS account, key
o Size of machines
o Architecture
e Hadoop installation provides a script to create cluster
o bin/hadoop-ec2 launch-cluster test-cluster 2
o Starts running a TaskTracker, command returns IP
e Can then either log in
e Or run remotely (just like we're doing)
o Caution, 10 is metered (cent per minute)

Do you even want to bother with virtual
machines?

e Amazon offers "Elastic Map Reduce”

How do I create one?

L (2 (3

T upload data

to Amazon r
S$3 Bucket ; E
»

Upload your application
and any data you wish to
process to an Amazon S3
bucket, using client tools
available here.

T Create a job flow
on Amazon Elastic

MapReduce .
wid

To create your job flow,
simply specify data inputs,
outputs, the processing
application, and number of
EC2 instances.

T

Get results from

Amazon S3 ’
Bucket \

Monitor the status of your
job flow and, when
complete, pick up your
results from the Amazon
S3 bucket.

Elastic MapReduce

e Uses S3 for Input and Output
e Very little configuration (web-based)
e Can use most of the techniques discussed in class
o Streaming
o Custom jar files
o Chaining jobs
e Cannot use
o Local data
o Hadoop pipes
e API or CLI for automation of creating environments / jobs

Complications of Using AWS

e There are outages (beyond your control)
o E.g. today (April 21, 2011), Reddit, Foursquare, and
Quora were down
e While there are SLAs, it's only a refund of what you've paid
e What's the answer?
o As before, it's almost always redundancy
e Amazon offers four zones
o US-East (Norcal), US-West (Virginia), Europe (Ireland),
Asia (Singapore)
o Hardware relatively independent across zones
o Multiple instances increase probability continuity, cost
o What about software?

No, | really want to build my
own

How to put together a new cluster

e Installing software

e Letting computers talk to each other
e Configuring the network

e Setting up storage

e Changing options

o

Installing Software

e Do it yourself
o Java
o Hadoop
o Anything else you need ...
e Use Cloudera
o Maintains internally consistent packages
o Play well together
o Provides
m Packages
m Different
for namenode, datanode, secondarynamenode,
jobtracker, tasktracker
m Virtual Machine Images
m Whirr (image + setup) for use on EC2

SSH Key Distribution

e NameNode and JobTracker must be able to connect to all
slave machines (e.g. to start up processes when the cluster
starts)

e SSH works on private and public keys

o Keep private key
o Distribute public key to the systems you connect to

e Typically done with a script on NameNode and JobTracker
that copies public key to many computers

e Do this with "hadoop" user

Specifying Network Topology

e Default configuration puts nodes on the same rack
e For small clusters, this is fine
e Large clusters have more complicated topology
o Throughput much larger within a rack
o Tasks will complete faster if jobs are localized to racks
e Goes beyond racks
o switch, data unit, building, datacenter

Configuring Topology

e The parameter topology.script.file.name should point to a
script that takes |IP addresses or host names and returns
the rack location

e You can also do this in Java

HADOOP_ CONF=/etc/hadoop/conf

while [$# -gt 0] ; do

nodeArg=$51
exec< ${HADOOP CONF}/topology.data
result=""
while read line ; do
ar=($line)
1if ["${ar[0]}" = "S$SnodeArg"] ; then
result="§{ar[1l]}"
fi
done
shift
if [-z "S$result”] ; then
echo -n "/default-rack "
else
echo -n "$result "
fi
done
hadoopdata’
hadoopdata’
10.1.1.1 /dc’

.ec.com /dc1/rack1
/dc1/rack1
/rack

Setting up HDFS

e NameNode - Hold metadata for the blocks of data on cluster
e Secondary NameNode - Merges EditList with Fsimage
o Identical memory requirement as NameNode
o Reconciles edits
o Not (just) a backup (changes in 0.21)
e Default
o Nodes are identical
o EditList is reconciled only on initialization
e NameNode often is the weakest link
o Good idea to have separate machine, less strain on
NameNode
e User-level Trash (not on by default)

Making NameNodes Resilient

e Save NameNode information on multiple hard drives
e Also save NameNode information on NFS (metadata)
e \What if NameNode fails?
o If it's just a HD, replace the disk and continue
o If the metadata are backed up, then any machine with
access to the data can take over
o Hadoop 0.21 is moving toward hot-swappable
NameNodes

Using a Secondary NameNode

e Adding it to the network
o Add its entry to the masters
Update dfs.http.address so it knows where to get edits
e \What if the NameNode fails?
o Change the IP address of secondary NameNode to that
of old NameNode
m Cannot just be host, as DNS is cached
o Remove its entry from masters, add new secondary
o Start the NameNode on what was the secondary

What does a DataNode look like?

${dfs.data.dir}

[current/VERSION

/blk_<id_1>

/blk_<id 1>.meta e Unlike NameNode dfs.data.
/blk_<id 2> dir is not replicated (RR)
/blk_<id 2>.meta e meta file contains version
/... information and checksums
/blk_<id 64> e subdirs don't correspond to
/blk_<id_64>.meta structure in HDFS; prevent
/subdirQ/ single directory from having too
/subdir1/ many files (dfs.datanode.

/ numblocks)

/subdir63/

Getting Ready to Run

e Create a hadoop user that own appropriate directories
o E.g. temporary processing files
o DataNode blocks
e Distribute configuration files
e Decide which nodes are going to take on which roles
o masters - list of secondary name nodes
o slaves - data nodes
e Run start-dfs.sh on the NameNode (SSH keys)
o Starts all of the data nodes
o Starts the SecondaryNameNode
o Enters safe mode
e Run start-mapred.sh on the JobTracker
o Starts TaskTracker on all of the slave nodes
o Starts JobTracker on current node

Options

e Live in the conf directory
o core-site.xml, mapred-site.xml, hdfs-site.xml
o Written as
<property> <name>dfs.client.buffer.dir</name>
<value>/tmp/hadoop/dfs/client</value> <final>true</final>
</property>
e Default options
o designed to be idiotproof
o somewhat optimized for standalone mode
o won't fail miserably for larger clusters

Map Options

e mapred.local.dir (/tmp/) - Where spills are written

e min.num.spills.for.combine (3) - When a combiner is
called

e io.sort.mb (100) - Buffer used in sorting map output

e io.sort.spill.percent (0.8) - How much of the memory
needs to be used before spilling to disk

e tasktracker.http.threads (40) - How many threads copy
data to reducer

MapReduce Options

e mapred.reduce.max.attempts (2) - Number of times to try
a job before declaring it failed
e mapred.max.{map|reduce}.failures.percent (0) - How
many failures are possible.
e mapred.task.timeout (10 min) - How long between
progress before declaring failure. [
o Task must give output, update counter, or change status
within this amount of time
e mapred.job.reduce.input.buffer.percent (0)
o How much reducer memory is used to buffer input
o Increase if reduce jobs are light on memory
e mapred.reduce.copy.backoff (300 s) - How long to wait on
a mapper's input

Changes to Default Options

dfs.name.dir, dfs.data.dir
e Stores where HDFS metadata and blocks are stored
e Defaults to /tmp
o Why is this a bad idea?
e Suggested change:
o hadoop home directory (e.g. /lhome/hadoop/name)

mapred.system.dir
e Stores Hadoop system files
e Defaults to /tmp
e Change to /home/hadoop/system

Changes to Default Options

mapred.tasktracker.{map,reduce}.tasks.maximum
e Number of taks that can run on a single TaskTracker
e Defaults to 4
e Suggested change:
o If tasks are 10 bound, have twice the number of cores
available

dfs.datanode.du.reserved
e Minimum amount of free space on DataNode
e Defaultis O
e Stopes block writing when threshold is crossed
e Change to 1GB to improve stability

Changes to Default Options

mapred.reduce.tasks
e Number of default reduce tasks per job (of course,
configurable per-job)
e Suggested change:
o 0.8 * maximum number available
o 1.5 * maximum number available
e Why might these be better ideas?

Cluster's Running ... Now What?

e Addressing common problems
e Improving scheduling

e Monitoring performance

e Adding new nodes

Changes in Response to Problems

e Big data transferring slowly:
o mapred.reduce.parallel.copies - number of threads used
to copy from mapper (default 5)
o mapred.compress.map.output - are spills compressed
(default false)
m Increases CPU overhead per mapper but leads to
faster transfer.
e Long object initialization: mapred.job.reuse.jvm.num.tasks -
reuse the JVM more than once (default 1)
e Sorts are taking too long: increase io.sort.factor to a larger
number (default 10) so that more spills can be merged at
once

Scheduling Jobs

e FIFO
o Default behavior
o Early users can monopolize cluster
e FairScheduler
o Users placed into pools
o Each pool should get an equal share of resources
o If resources are unequal for too long, preempt offending
jobs
e CapacityScheduler
o Slices cluster in the queues
o Jobs are submitted to queues, which maintain FIFO
scheduling

fsck and rebalance

e Like the Linux command, checks health of file system
o Unlike the Linux command, doesn't fix them
e Reports replications
e Can also list where blocks are located for a file
e \What to do when unbalanced?
o Wait and let things sort themselves out
o Run bin/start-balancer.sh
o Restart HDFS

Adding New Nodes

e Simple version: Just point nodes at correct JobTracker and
NameNode, start daemon
o Security issue
e Better idea: explicitly specify hosts in dfs.hosts and mapred.
hosts located on NameNode and JobTracker
e |s your cluster now good to go?

Removing Nodes

e Could just unplug ...

e Add the node to to dfs.hosts.excludes and mapred.hosts.
excludes

e Jobs will not run

e Blocks will not count toward replication

e Run

bin/hadoop dfsadmin -refreshNodes

e Will begin to move data off nodes

Ongoing Activities

e Monitor health of cluster (e.g. Ganglia)

e Set up alerts to warn of impending issues

e If there are "bread and butter" applications, regularly
benchmark them

e Adjust parameters as average use cases emerge

e Create infrastructure for changing and deploying new
configurations

Recap

e Options for running your code on a scalable platform
o Not rolling your own is often the better option
e Details of a real installation
o Data storage
o Network connectivity
o Scheduling
o Adding and removing nodes
e Messy detalls, but this is the glue that holds the web
together

