
Building and Administering
Hadoop Clusters

21 April 2011
Jordan Boyd-Graber

Administrivia

Homework 5 graded
Homework 6 due soon
Keep working on projects!
Final next week (will take better of midterm of final)
Will have food for final class, May 5 (RSVP)
Project writeup due May 10

Roadmap

Choosing hardware / platform
Getting a single node up and running
Managing a running cluster

Caches, Buffers, and Backups
Scheduling Policies

Adding nodes

Caveats and Context

Why talk about this now?
Even if you never have to worry about it, it helps you
understand the underlying process
I am not an expert in running Hadoop clusters
However ...

Have seen multiple clusters in operation
Involved in setting up Maryland's
Suggestions culled from multiple sources
Have run these tips by people who do admin (but too
shy / lazy to talk to you)

Your mileage may vary ... be sure to vet tweaks

What Machines to Buy

Get beefy consumer-grade machines
Get components that you can replace for the next 4-8 years
If you want homogenous hardware, buy expensive now, and
have costs descend as you scale out over time
UMIACS Bespin cluster:

Data nodes: HCGI/Ingram-Micro SuperMicro 2U quad-
server enclosure with each server equipped with 2 quad-
core 2.4Ghz Opteron Processors, 24GB of memory, and
three 2TB SATA Drives.
Name nodes: PowerEdge R610 with dual 2.66 Ghz
processors, 48GB of memory (6x4GB) , two mirrored
500GB 7200 rpm 2.5inch sata drives, and redundant
power supplies with an idrac enterprise.

Do you even want to buy machines?

Amazon Elastic Compute Cloud (Amazon EC2)
Part of Amazon Web Services (AWS)
Rent machines for $0.10 / machine hour to $2 / machine
hour (depending on CPU / memory)
Who's using it

Autodesk, Washington Post, Reddit
Foursquare, Quora, Amazon

 Pros
Don't pay for support, electricity
Seamless "upgrades"

Cost
Not as cost-effective as running your own cluster 24/7

Who does?
Less control

Creating and Using a Hadoop Cluster
on EC2

Install Hadoop on a local machine
Edit hadoop/src/contrib/ec2/bin/hadoop-ec2-env.sh�

Add AWS account, key
Size of machines
Architecture

Hadoop installation provides a script to create cluster
bin/hadoop-ec2 launch-cluster test-cluster 2
Starts running a TaskTracker, command returns IP

Can then either log in
Or run remotely (just like we're doing)

Caution, IO is metered (cent per minute)

Do you even want to bother with virtual
machines?

Amazon offers "Elastic Map Reduce"

Elastic MapReduce

Uses S3 for Input and Output
Very little configuration (web-based)
Can use most of the techniques discussed in class

Streaming
Custom jar files
Chaining jobs

Cannot use
Local data
Hadoop pipes

API or CLI for automation of creating environments / jobs

Complications of Using AWS

There are outages (beyond your control)
E.g. today (April 21, 2011), Reddit, Foursquare, and
Quora were down

While there are SLAs, it's only a refund of what you've paid
What's the answer?

As before, it's almost always redundancy
Amazon offers four zones

US-East (Norcal), US-West (Virginia), Europe (Ireland),
Asia (Singapore)
Hardware relatively independent across zones
Multiple instances increase probability continuity, cost
What about software?

No, I really want to build my
own

How to put together a new cluster

Installing software
Letting computers talk to each other
Configuring the network
Setting up storage
Changing options

Installing Software

Do it yourself
Java
Hadoop
Anything else you need ...

Use Cloudera
Maintains internally consistent packages
Play well together
Provides

Packages
Different
for namenode, datanode, secondarynamenode,
 jobtracker, tasktracker

Virtual Machine Images
Whirr (image + setup) for use on EC2

SSH Key Distribution

NameNode and JobTracker must be able to connect to all
slave machines (e.g. to start up processes when the cluster
starts)
SSH works on private and public keys

Keep private key
Distribute public key to the systems you connect to

Typically done with a script on NameNode and JobTracker
that copies public key to many computers
Do this with "hadoop" user

Specifying Network Topology

Default configuration puts nodes on the same rack
For small clusters, this is fine
Large clusters have more complicated topology

Throughput much larger within a rack
 Tasks will complete faster if jobs are localized to racks

Goes beyond racks
switch, data unit, building, datacenter

Configuring Topology

The parameter topology.script.file.name should point to a
script that takes IP addresses or host names and returns
the rack location
You can also do this in Java

hadoopdata1.ec.com /dc1/rack1
hadoopdata1 /dc1/rack1
10.1.1.1 /dc1/rack1

Setting up HDFS

NameNode - Hold metadata for the blocks of data on cluster
Secondary NameNode - Merges EditList with FsImage

Identical memory requirement as NameNode
Reconciles edits
Not (just) a backup (changes in 0.21)

Default
Nodes are identical
EditList is reconciled only on initialization

NameNode often is the weakest link
Good idea to have separate machine, less strain on
NameNode

User-level Trash (not on by default)

Making NameNodes Resilient

Save NameNode information on multiple hard drives
Also save NameNode information on NFS (metadata)
What if NameNode fails?

If it's just a HD, replace the disk and continue
If the metadata are backed up, then any machine with
access to the data can take over
Hadoop 0.21 is moving toward hot-swappable
NameNodes

Using a Secondary NameNode

Adding it to the network
Add its entry to the masters

Update dfs.http.address so it knows where to get edits
What if the NameNode fails?

Change the IP address of secondary NameNode to that
of old NameNode

Cannot just be host, as DNS is cached
Remove its entry from masters, add new secondary
Start the NameNode on what was the secondary

What does a DataNode look like?

${dfs.data.dir}
/current/VERSION
/blk_<id_1>
/blk_<id_1>.meta
/blk_<id_2>
/blk_<id_2>.meta
/...
/blk_<id_64>
/blk_<id_64>.meta
/subdir0/
/subdir1/
/...
/subdir63/

Unlike NameNode dfs.data.
dir is not replicated (RR)
meta file contains version
information and checksums
subdirs don't correspond to
structure in HDFS; prevent
single directory from having too
many files (dfs.datanode.
numblocks)

Getting Ready to Run

Create a hadoop user that own appropriate directories
E.g. temporary processing files
DataNode blocks

Distribute configuration files
Decide which nodes are going to take on which roles

masters - list of secondary name nodes
slaves - data nodes

Run start-dfs.sh on the NameNode (SSH keys)
Starts all of the data nodes
Starts the SecondaryNameNode
Enters safe mode

Run start-mapred.sh on the JobTracker
Starts TaskTracker on all of the slave nodes
Starts JobTracker on current node

Options

Live in the conf directory
core-site.xml, mapred-site.xml, hdfs-site.xml

Written as
<property> <name>dfs.client.buffer.dir</name>
<value>/tmp/hadoop/dfs/client</value> <final>true</final>
</property>

Default options
designed to be idiotproof
somewhat optimized for standalone mode
won't fail miserably for larger clusters

Map Options

mapred.local.dir (/tmp/) - Where spills are written
min.num.spills.for.combine (3) - When a combiner is
called
io.sort.mb (100) - Buffer used in sorting map output
io.sort.spill.percent (0.8) - How much of the memory
needs to be used before spilling to disk
tasktracker.http.threads (40) - How many threads copy
data to reducer

MapReduce Options

mapred.reduce.max.attempts (2) - Number of times to try
a job before declaring it failed
mapred.max.{map|reduce}.failures.percent (0) - How
many failures are possible.
mapred.task.timeout (10 min) - How long between
progress before declaring failure.�

Task must give output, update counter, or change status
within this amount of time

mapred.job.reduce.input.buffer.percent (0)
How much reducer memory is used to buffer input
Increase if reduce jobs are light on memory

mapred.reduce.copy.backoff (300 s) - How long to wait on
a mapper's input

Changes to Default Options

dfs.name.dir, dfs.data.dir
Stores where HDFS metadata and blocks are stored
Defaults to /tmp

Why is this a bad idea?
Suggested change:

hadoop home directory (e.g. /home/hadoop/name)

mapred.system.dir
Stores Hadoop system files
Defaults to /tmp
Change to /home/hadoop/system

Changes to Default Options

mapred.tasktracker.{map,reduce}.tasks.maximum
Number of taks that can run on a single TaskTracker
Defaults to 4
Suggested change:

If tasks are IO bound, have twice the number of cores
available

dfs.datanode.du.reserved
Minimum amount of free space on DataNode
Default is 0
Stopes block writing when threshold is crossed
Change to 1GB to improve stability

Changes to Default Options

mapred.reduce.tasks
Number of default reduce tasks per job (of course,
configurable per-job)
Suggested change:

0.8 * maximum number available
1.5 * maximum number available

Why might these be better ideas?

Cluster's Running ... Now What?

Addressing common problems
Improving scheduling
Monitoring performance
Adding new nodes

Changes in Response to Problems

Big data transferring slowly:
 mapred.reduce.parallel.copies - number of threads used
to copy from mapper (default 5)
mapred.compress.map.output - are spills compressed
(default false)

Increases CPU overhead per mapper but leads to
faster transfer.

Long object initialization: mapred.job.reuse.jvm.num.tasks -
reuse the JVM more than once (default 1)
Sorts are taking too long: increase io.sort.factor to a larger
number (default 10) so that more spills can be merged at
once

Scheduling Jobs

FIFO
Default behavior
Early users can monopolize cluster

 FairScheduler
Users placed into pools
Each pool should get an equal share of resources
If resources are unequal for too long, preempt offending
jobs

CapacityScheduler
Slices cluster in the queues
Jobs are submitted to queues, which maintain FIFO
scheduling

fsck and rebalance

Like the Linux command, checks health of file system
Unlike the Linux command, doesn't fix them

Reports replications
Can also list where blocks are located for a file
What to do when unbalanced?

Wait and let things sort themselves out
Run bin/start-balancer.sh
Restart HDFS

Adding New Nodes

Simple version: Just point nodes at correct JobTracker and
NameNode, start daemon

Security issue
Better idea: explicitly specify hosts in dfs.hosts and mapred.
hosts located on NameNode and JobTracker
Is your cluster now good to go?

Removing Nodes

Could just unplug ...
Add the node to to dfs.hosts.excludes and mapred.hosts.
excludes
Jobs will not run
Blocks will not count toward replication
Run

 bin/hadoop dfsadmin -refreshNodes

Will begin to move data off nodes

Ongoing Activities

Monitor health of cluster (e.g. Ganglia)
Set up alerts to warn of impending issues
If there are "bread and butter" applications, regularly
benchmark them
Adjust parameters as average use cases emerge
Create infrastructure for changing and deploying new
configurations

Recap

Options for running your code on a scalable platform
Not rolling your own is often the better option

Details of a real installation
Data storage
Network connectivity
Scheduling
Adding and removing nodes

Messy details, but this is the glue that holds the web
together

