Active Learning

Digging into Data

April 21, 2014

Slides adapted from Piyush Rai
(Passive) Supervised Learning

Some figures from Burr Settles

1

1Some figures from Burr Settles
(Passive) Supervised Learning

supervised learner
induces a classifier

random sample

expert / oracle
analyzes experiments to determine labels

raw unlabeled data

x_1, x_2, x_3, \ldots
(Passive) Supervised Learning

raw unlabeled data
x_1, x_2, x_3, \ldots

labeled training instances
$(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$

supervised learner
induces a classifier

random sample

expert / oracle
analyzes experiments
to determine labels
Semi-supervised Learning

exploit the structure in unlabeled data

semi-supervised learner induces a classifier

raw unlabeled data x_1, x_2, x_3, \ldots

labeled training instances $\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \ldots$

random sample

expert / oracle analyzes experiments to determine labels
Active Learning

Assumes some small amount of initial labeled training data

active learner induces a classifier

raw unlabeled data \(x_1, x_2, x_3, \ldots \)

expert / oracle analyzes experiments to determine labels
Active Learning

Inspect the unlabeled data

raw unlabeled data

\[x_1, x_2, x_3, \ldots \]

Active learner induces a classifier

Expert/oracle analyzes experiments to determine labels
Active Learning

inspect the unlabeled data

raw unlabeled data x_1, x_2, x_3, \ldots

request labels for selected data

$\langle x_1, ? \rangle$

active learner induces a classifier

expert / oracle analyzes experiments to determine labels
Active Learning

- **Raw unlabeled data** x_1, x_2, x_3, \ldots
- **Request labels for selected data** $\langle x_1, ? \rangle$
- **Active learner** induces a classifier
- **Expert/oracle** analyzes experiments to determine labels
Active Learning

- Inspect the unlabeled data
- Raw unlabeled data: \(x_1, x_2, x_3, \ldots \)
- Request labels for selected data: \(\langle x_1, \? \rangle, \langle x_2, \? \rangle, \langle x_1, y_1 \rangle \)
- Active learner induces a classifier
- Expert/oracle analyzes experiments to determine labels
Active Learning

Inspect the unlabeled data

Request labels for selected data

Active learner induces a classifier

Expert/oracle analyzes experiments to determine labels
Active Learning vs Random Sampling

- Passive Learning curve: Randomly selects examples to get labels for
- Active Learning curve: Active learning selects examples to get labels for

![Learning Curves](chart.png)
Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

- Of course, thing could go wrong . . .
Types of Active Learning

Largely falls into one of these two types:

Stream-Based Active Learning

- Unlabeled example by example
- query its label or ignore it
Types of Active Learning

Largely falls into one of these two types:

Stream-Based Active Learning

- Unlabeled example by example
- query its label or ignore it

Pool-Based Active Learning

- Given: a large unlabeled pool of examples
- Rank examples in order of informativeness
- Query the labels for the most informative example(s)
How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - ...using one of the query selection strategies
Active Learning proceeds in rounds

Each round has a current model (learned using the labeled data seen so far)

The current model is used to assess informativeness of unlabeled examples

 ... using one of the query selection strategies

 The most informative example(s) is/are selected

 The labels are obtained (by the labeling oracle)

 The (now) labeled example(s) is/are included in the training data

 The model is re-trained using the new training data
Active Learning proceeds in rounds

Each round has a current model (learned using the labeled data seen so far)

The current model is used to assess informativeness of unlabeled examples

- ... using one of the query selection strategies

 - The most informative example(s) is/are selected
 - The labels are obtained (by the labeling oracle)
 - The (now) labeled example(s) is/are included in the training data
 - The model is re-trained using the new training data

The process repeat until we have no budget left for getting labels
Query Selection Strategies

Any Active Learning algorithm requires a query selection strategy

Some examples:

- Uncertainty Sampling
- Query By Committee (QBC)
- Expected Model Change
- Expected Error Reduction
- Variance Reduction
- Density Weighted Methods
Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about

- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|\vec{x})$ (for probabilistic models)
Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about.

- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_\theta(y|x)$ (for probabilistic models)

- Some typically used measures based on label probabilities:
 - **Least Confident**: $x^{*}_{LC} = \arg\max_x 1 - P_\theta(\hat{y}|x)$
 where \hat{y} is the most probable label for x under the current model θ
 - **Smallest Margin**: $x^{*}_{SM} = \arg\min_x P_\theta(y_1|x) - P_\theta(y_2|x)$
 y_1, y_2 are the two most probable labels for x under the current model
 - **Label Entropy**: choose example whose label entropy is maximum
 $$x^{*}_{LE} = \arg\max_x - \sum_i P_\theta(y_i|x) \log P_\theta(y_i|x)$$
 where y_i ranges over all possible labels
Uncertainty Sampling

A simple illustration of uncertainty sampling based on the distance from the hyperplane (i.e., margin based)

400 instances sampled from 2 class Gaussians

random sampling
30 labeled instances (accuracy=0.7)

uncertainty sampling
30 labeled instances (accuracy=0.9)
Uncertainty Sampling based on Label-Propagation

(1) Build neighborhood graph

(2) Query some random points

(3) Propagate labels

(4) Make query and go to (3)
Query By Committee (QBC)

- QBC uses a committee of models $\mathcal{C} = \{\theta^{(1)}, \ldots, \theta^{(C)}\}$
- All models trained using the currently available labeled data \mathcal{L}
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta | \mathcal{L})$
 - Using ensemble methods (bagging/boosting, etc.)

Votes and disagreement:
- Each model in the committee is re-trained after including the new example(s)
- Some ways to measure disagreement:
 - Vote Entropy $\mathcal{C} \log V(y_i)$
 - Maximum disagreement strategy: $\mathcal{C} \log V(y_i) = \arg \max_x V(x)$
Query By Committee (QBC)

- QBC uses a committee of models $\mathcal{C} = \{\theta^{(1)}, \ldots, \theta^{(C)}\}$
- All models trained using the currently available labeled data \mathcal{L}
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta | \mathcal{L})$
 - Using ensemble methods (bagging/boosting, etc.)
- All models vote their predictions on the unlabeled pool
- The example(s) with maximum disagreement is/are chosen for labeling
- One way of measuring disagreement is the Vote Entropy
 - Vote Entropy
 $$x^{*}_{VE} = \arg \max_{x} - \sum_{i} \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}$$

 y_i ranges over all possible labels, $V(y_i)$: number of votes received to label y_i
- Each model in the committee is re-trained after including the new example(s)
Effect of Outlier Examples

- Uncertainty Sampling or QBC may wrongly think an outlier to be an informative example
- Such examples won’t really help (and can even be misleading)

Other robust query selection methods exist to deal with outliers

Idea: Instead of using the confidence of a model on an example, see how a labeled example affects the model itself (various ways to quantify this)
 - The example(s) that affects the model the most is probably the most informative
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion **brings about the maximum change in the model** (e.g., the gradient of the loss function w.r.t. the parameters)

\[R(x) = X_u E_y \mathbb{H}_{\mathbb{X} + h_{x,y_i}} \mid Y_u \right] \]
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u E_y \left[H_{\theta + \langle x, y \rangle} [Y | u] \right]
\] (1)
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u \mathbb{E}_y \left[\mathbb{H}_{\theta + \langle x, y \rangle} [Y | u] \right]
\] (1)
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u E_y \left[H_{\theta + \langle x, y \rangle} [Y | u] \right] \tag{1}
\]

Consider all possible unlabeled instances
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u \mathbb{E}_y \left[\mathbb{H}_{\theta^+} \left[Y \mid u \right] \right]
\]

(1)

Consider the possible labels of the point
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

 \[R(x) = \sum_u \mathbb{E}_y \left[H_{\theta + \langle x, y \rangle} [Y | u] \right] \]

 How uncertain is your model now given that information
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u \mathbb{E}_y \left[H_{\theta + \langle x, y \rangle} [Y | u] \right]
\] (1)
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

 \[
 R(x) = \sum_u \mathbb{E}_y \left[H_{\theta + \langle x, y \rangle} [Y | u] \right] \tag{1}
 \]

- **Variance Reduction**
 - Select example(s) that reduces the model variance by the most
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most

\[
R(x) = \sum_u \mathbb{E}_y \left[\mathbb{H}_{\theta + \langle x, y \rangle} [Y | u] \right] \tag{1}
\]

- **Variance Reduction**
 - Select example(s) that reduces the model variance by the most

- **Density Weighting**
 - Weight the informativeness of an example by its average similarity to the entire unlabeled pool of examples
 - An outlier will not get a substantial weight!
Concluding Thoughts...

- Active Learning: **Label-efficient** learning strategy
- Based on judging the **informativeness** of examples
- Several variants possible. E.g.,
 - Different examples having **different labeling costs**
 - Access to **multiple labeling oracles** (possibly noisy)
 - **Active Learning on features** instead of labels (e.g., if features are expensive)
- Being “actively” used in industry (IBM, Microsoft, Siemens, Google, etc.)
- Some questions worth thinking about (read the Active Learning survey)
 1. Can I **reuse** an actively labeled dataset to **train a new different model**?
 2. Sampling is **biased**. The actively labeled dataset **doesn’t reflect the true training/test data distribution**. What could be the consequences? How could this be accounted for?
In class . . .

- Demo of active learning framework
- Discussion of when active learning might be appropriate
- Continue discussion of projects