Digging into Data

April 21, 2014

COLLEGE OF INFORMATION STUDIES

Slides adapted from Piyush Rai

(Passive) Supervised Learning

raw unlabeled data x_1, x_2, x_3, \ldots

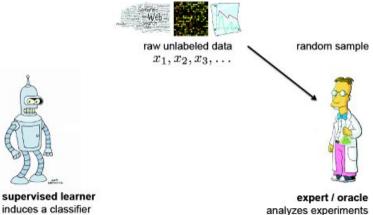
supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

¹Some figures from Burr Settles

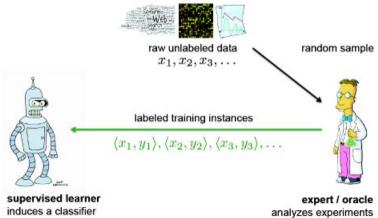
1

(Passive) Supervised Learning



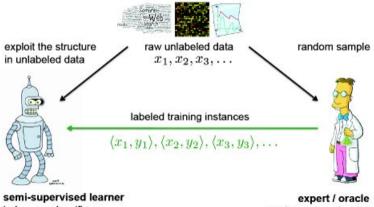
nalyzes experiments to determine labels

(Passive) Supervised Learning



to determine labels

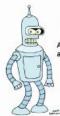
Semi-supervised Learning



induces a classifier

analyzes experiments to determine labels

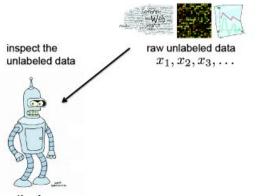
raw unlabeled data x_1, x_2, x_3, \ldots



Assumes some small amount of initial labeled training data

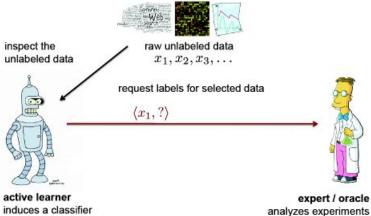
active learner induces a classifier

expert / oracle analyzes experiments to determine labels

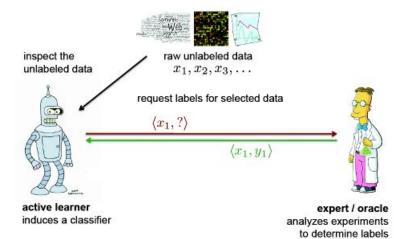


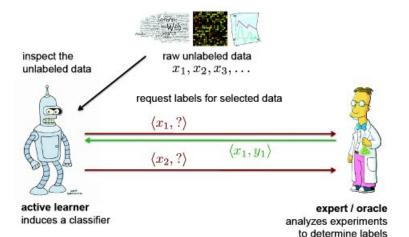
active learner induces a classifier

expert / oracle analyzes experiments to determine labels

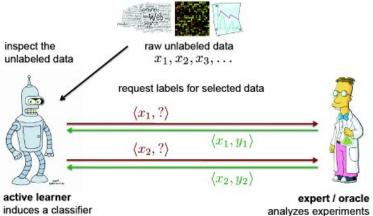


to determine labels





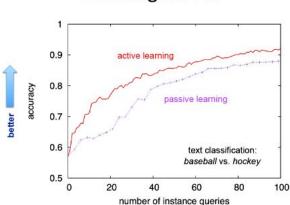
Digging into Data



nalyzes experiments to determine labels

Active Learning vs Random Sampling

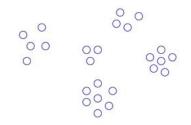
- Passive Learning curve: Randomly selects examples to get labels for
- Active Learning curve: Active learning selects examples to get labels for



Learning Curves

A Naïve Approach

Suppose the unlabeled data looks like this.



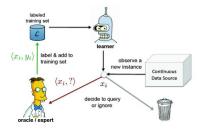
Then perhaps we just need five labels!

• Of course, thing could go wrong ...

Types of Active Learning

Largely falls into one of these two types:

Stream-Based Active Learning



- Unlabeled example by example
- query its label or ignore it

Types of Active Learning

Stream-Based Active Learning

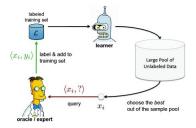
Largely falls into one of these two types:

$\begin{array}{c} \textbf{labeled} \\ \hline \textbf{raining set} \\ \hline \textbf{karner} \\ \textbf{karner} \\$

Unlabeled example by example

• query its label or ignore it

Pool-Based Active Learning



- Given: a large unlabeled pool of examples
- Rank examples in order of informativeness
- Query the labels for the most informative example(s)

Digging into Data

Active Learning

How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - ... using one of the query selection strategies

How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - ... using one of the query selection strategies
 - The most informative example(s) is/are selected
 - The labels are obtained (by the labeling oracle)
 - The (now) labeled example(s) is/are included in the training data
 - The model is re-trained using the new training data

How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - ... using one of the query selection strategies
 - The most informative example(s) is/are selected
 - The labels are obtained (by the labeling oracle)
 - The (now) labeled example(s) is/are included in the training data
 - The model is re-trained using the new training data
- The process repeat until we have no budget left for getting labels

Query Selection Strategies

Any Active Learning algorithm requires a query selection strategy

Some examples:

- Uncertainty Sampling
- Query By Committee (QBC)
- Expected Model Change
- Expected Error Reduction
- Variance Reduction
- Density Weighted Methods

Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about
- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|\vec{x})$ (for probabilistic models)

Uncertainty Sampling

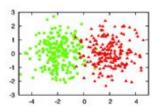
- Select examples which the current model θ is the most uncertain about
- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|\vec{x})$ (for probabilistic models)
- Some typically used measures based on label probabilities:
 - ► Least Confident: $x_{LC}^* = \arg \max_x 1 P_{\theta}(\hat{y}|x)$ where \hat{y} is the most probable label for x under the current model θ
 - Smallest Margin: x^{*}_{SM} = argmin_x P_θ(y₁|x) P_θ(y₂|x) y₁, y₂ are the two most probable labels for x under the current model
 - Label Entropy: choose example whose label entropy is maximum

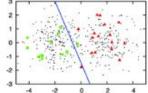
$$x_{LE}^{*} = \arg \max_{x} - \sum_{i} P_{\theta}(y_{i}|x) \log P_{\theta}(y_{i}|x)$$

where y_i ranges over all possible labels

Uncertainty Sampling

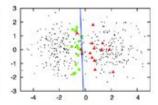
A simple illustration of uncertainty sampling based on the distance from the hyperplane (i.e., margin based)





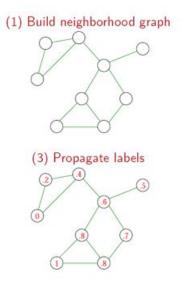
400 instances sampled from 2 class Gaussians

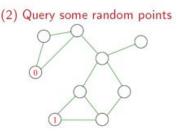
random sampling 30 labeled instances (accuracy=0.7)

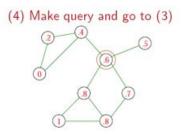


uncertainty sampling 30 labeled instances (accuracy=0.9)

Uncertainty Sampling based on Label-Propagation







Query By Committee (QBC)

- QBC uses a committee of models $\mathscr{C} = \{\theta^{(1)}, \dots, \theta^{(C)}\}$
- All models trained using the currently available labeled data ${\mathscr L}$
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta|\mathcal{L})$
 - Using ensemble methods (bagging/boosting, etc.)

Query By Committee (QBC)

- QBC uses a committee of models $\mathscr{C} = \{\theta^{(1)}, \dots, \theta^{(C)}\}$
- All models trained using the currently available labeled data ${\mathscr L}$
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta|\mathcal{L})$
 - Using ensemble methods (bagging/boosting, etc.)
- All models vote their predictions on the unlabeled pool
- The example(s) with maximum disagreement is/are chosen for labeling
- One way of measuring disagreement is the Vote Entropy
 - Vote Entropy

$$x_{VE}^* = \arg\max_{x} - \sum_{i} \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}$$

 y_i ranges over all possible labels, $V(y_i)$: number of votes received to label y_i

• Each model in the committee is re-trained after including the new example(s)

Digging into Data

Effect of Outlier Examples

- Uncertainty Sampling or QBC may wrongly think an outlier to be an informative example
- Such examples won't really help (and can even be misleading)

- Other robust query selection methods exist to deal with outliers
- Idea: Instead of using the confidence of a model on an example, see how a labeled example affects the model itself (various ways to quantify this)
 - The example(s) that affects the model the most is probably the most informative

Di	aai	ina	into	Data
2	99	mg.	into	Dutu

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+} \langle x, y \rangle} [Y | u] \right]$$
(1)

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+} \langle x, y \rangle} [Y | u] \right]$$
(1)

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+}\langle x, y \rangle} [Y | u] \right]$$
(1)

Consider all possible unlabeled instances

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{\mathbf{y}} \left[\mathbb{H}_{\theta^+ \langle x, y \rangle} [Y | u] \right]$$
(1)

Consider the possible labels of the point

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+}\langle x, y \rangle} [Y | u] \right]$$
(1)

How uncertain is your model now given that information

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+} \langle x, y \rangle} [Y | u] \right]$$
(1)

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+} \langle x, y \rangle} [Y | u] \right]$$
(1)

- Variance Reduction
 - Select example(s) that reduces the model variance by the most

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

Select example that reduces the expected generalization error the most

$$R(x) = \sum_{u} \mathbb{E}_{y} \left[\mathbb{H}_{\theta^{+} \langle x, y \rangle} [Y | u] \right]$$
(1)

Variance Reduction

Select example(s) that reduces the model variance by the most

Density Weighting

- Weight the informativeness of an example by its average similarity to the entire unlabeled pool of examples
- An outlier will not get a substantial weight!

Concluding Thoughts...

- Active Learning: Label-efficient learning strategy
- Based on judging the informativeness of examples
- Several variants possible. E.g.,
 - Different examples having different labeling costs
 - Access to multiple labeling oracles (possibly noisy)
 - Active Learning on features instead of labels (e.g., if features are expensive)
- Being "actively" used in industry (IBM, Microsoft, Siemens, Google, etc.)
- Some questions worth thinking about (read the Active Learning survey)
 - Can I reuse an actively labeled dataset to train a new different model?
 - Sampling is biased. The actively labeled dataset doesn't reflect the true training/test data distribution. What could be the consequences? How could this be accounted for?

Digging into Data

Active Learning

- Demo of active learning framework
- Discussion of when active learning might be appropriate
- Continue discussion of projects