Unsupervised Clustering

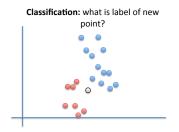
Digging into Data

April 14, 2014

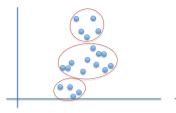
Slides adapted from Lauren Hannah

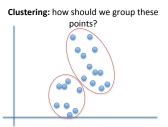
- What is clustering?
- K-Means
- R's implementation of K-means
- Write a K-means algorithm in R
- Animations in R

Clustering

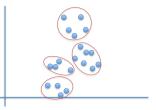


Clustering: or is this the right grouping?





Clustering: what about this?

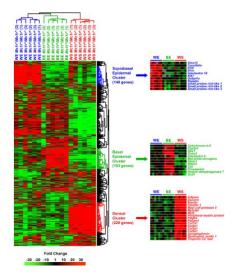


Clustering

Uses:

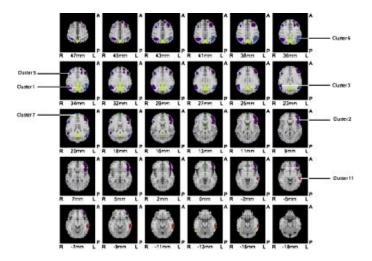
- genomics
- medical imaging
- social network analysis
- recommender systems
- market segmentation
- voter analysis

Microarray Gene Expression Data



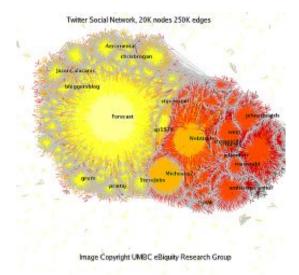
From: "Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice" by April and Barsh in Pigment Cell Research (2006)

Medical Imaging (MRIs and PET scans)



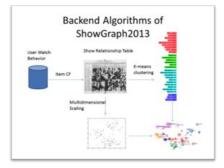
From: "Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years" by Pardo et al. in Alzheimer's and Dementia (2010)

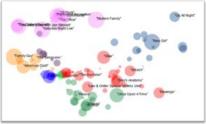
Social Networks



From: http://flowingdata.com/2008/03/12/17-ways-to-visualize-the-twitter-universe/

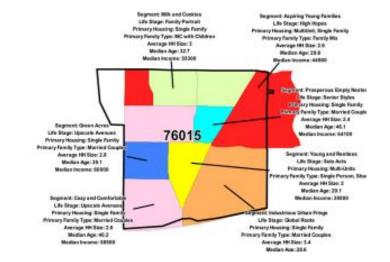
Recommender Systems





From: tech.hulu.com/blog/

Market Segmentation



From: mappinganalytics.com/map/segmentation-maps/segmentation-map.html

Voter Analysis

- soccer moms (female, middle aged, married, middle income, white, kids, suburban)
- Nascar dads (male, middle aged, married, middle income, white, kids, Southern, suburban or rural)
- security moms (...)
- Iow information voters

Ivy League Elites

Questions:

- how do we fit clusters?
- how many clusters should we use?
- how should we evaluate model fit?

K-Means

How do we fit the clusters?

- simplest method: K-means
- requires: real-valued data

• idea:

- pick K initial cluster means
- associate all points closest to mean k with cluster k
- use points in cluster k to update mean for that cluster
- re-associate points closest to new mean for k with cluster k
- use new points in cluster k to update mean for that cluster

٠.

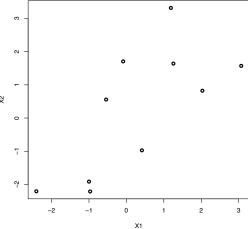
stop when no change between updates

Animation at:

http://animation.yihui.name/mvstat:k-means_cluster_algorithm

Data:

<i>x</i> 1	<i>x</i> ₂	
0.4	-1.0	e –
-1.0	-2.2	
-2.4	-2.2	α –
-1.0	-1.9	
-0.5	0.6	~ -
-0.1	1.7	8
1.2	3.3	0 -
3.1	1.6	
1.3	1.6	7 -
2.0	0.8	
		° - •

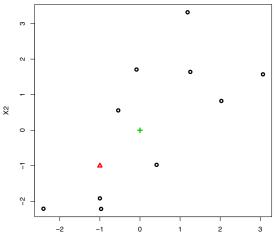


> # Data

> x

Pick K centers (randomly):

(-1, -1) and (0, 0)



X1

Calculate distance between points and those centers:

<i>x</i> ₁	<i>x</i> ₂	(-1,-1)	(0,0)
0.4	-1.0	1.4	1.1
-1.0	-2.2	1.2	2.4
-2.4	-2.2	1.9	3.3
-1.0	-1.9	0.9	2.2
-0.5	0.6	1.6	0.8
-0.1	1.7	2.9	1.7
1.2	3.3	4.8	3.5
3.1	1.6	4.8	3.4
1.3	1.6	3.5	2.1
2.0	0.8	3.5	2.2

> centers <- rbind(c(-1,-1),c(0,0))</pre>

> dist1 <- apply(x,1,function(x) sqrt(sum((x-centers[1,])^2)))</pre>

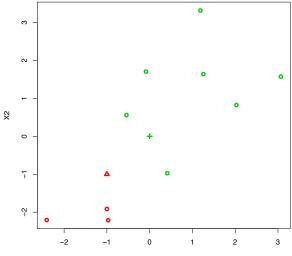
> dist2 <- apply(x,1,function(x) sqrt(sum((x-centers[2,])^2)))</pre>

Choose mean with smaller distance:

<i>x</i> ₁	<i>x</i> ₂	(-1,-1)	(0,0)
0.4	-1.0	1.4	1.1
-1.0	-2.2	1.2	2.4
-2.4	-2.2	1.9	3.3
-1.0	-1.9	0.9	2.2
-0.5	0.6	1.6	0.8
-0.1	1.7	2.9	1.7
1.2	3.3	4.8	3.5
3.1	1.6	4.8	3.4
1.3	1.6	3.5	2.1
2.0	0.8	3.5	2.2

- > dists <- cbind(dist1,dist2)</pre>
- > cluster.ind <- apply(dists,1,which.min)</pre>

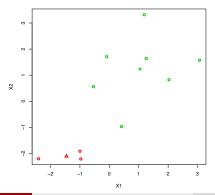
New clusters:



X1

Refit means for each cluster:

- cluster 1: (-1.0, -2.2), (-2.4, -2.2), (-1.0, -1.9)
- new mean: (-1.5, -2.1)
- cluster 2: (0.4, -1.0), (-0.5, 0.6), (-0.1, 1.7), (1.2, 3.3), (3.1, 1.6), (1.3, 1.6), (2.0, 0.8)
- new mean: (1.0, 1.2)



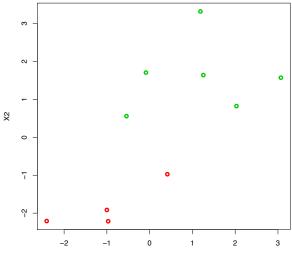
Recalculate distances for each cluster:

<i>x</i> ₁	<i>x</i> ₂	(-1.5, -2.1)	(1.0, 1.2)
0.4	-1.0	2.2	2.3
-1.0	-2.2	0.5	4.0
-2.4	-2.2	1.0	4.9
-1.0	-1.9	0.5	3.8
-0.5	0.6	2.8	1.7
-0.1	1.7	4.1	1.2
1.2	3.3	6.0	2.1
3.1	1.6	5.8	2.0
1.3	1.6	4.6	0.5
2.0	0.8	4.6	1.1

Choose mean with smaller distance:

<i>x</i> ₁	<i>x</i> ₂	(-1.5, -2.1)	(1.0, 1.2)
0.4	-1.0	2.2	2.3
-1.0	-2.2	0.5	4.0
-2.4	-2.2	1.0	4.9
-1.0	-1.9	0.5	3.8
-0.5	0.6	2.8	1.7
-0.1	1.7	4.1	1.2
1.2	3.3	6.0	2.1
3.1	1.6	5.8	2.0
1.3	1.6	4.6	0.5
2.0	0.8	4.6	1.1

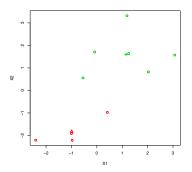
New clusters:



X1

Refit means for each cluster:

- cluster 1: (0.4, -1.0), (-1.0, -2.2), (-2.4, -2.2), (-1.0, -1.9)
- new mean: (-1.0, -1.8)
- cluster 2: (-0.5, 0.6), (-0.1, 1.7), (1.2, 3.3), (3.1, 1.6), (1.3, 1.6), (2.0, 0.8)
- new mean: (1.2, 1.6)



Recalculate distances for each cluster:

<i>x</i> ₁	<i>x</i> ₂	(-1.0, -1.8)	(1.2, 1.6)
0.4	-1.0	1.6	2.7
-1.0	-2.2	0.4	4.4
-2.4	-2.2	1.5	5.2
-1.0	-1.9	0.1	4.1
-0.5	0.6	2.4	2.0
-0.1	1.7	3.6	1.2
1.2	3.3	5.6	1.7
3.1	1.6	5.3	1.9
1.3	1.6	4.1	0.1
2.0	0.8	4.0	1.2

Select smallest distance and compare these clusters with previous:

<i>X</i> ₁	<i>x</i> ₂	(-1.0, -1.8)	(1.2, 1.6)
0.4	-1.0	1.6	2.7
-1.0	-2.2	0.4	4.4
-2.4	-2.2	1.5	5.2
-1.0	-1.9	0.1	4.1
-0.5	0.6	2.4	2.0
-0.1	1.7	3.6	1.2
1.2	3.3	5.6	1.7
3.1	1.6	5.3	1.9
1.3	1.6	4.1	0.1
2.0	0.8	4.0	1.2

Table : New Clusters

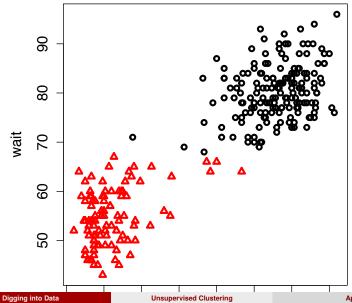
Table : Old Clusters

(-1.5, -2.1)	(1.0, 1.2)
2.2	2.3
0.5	4.0
1.0	4.9
0.5	3.8
2.8	1.7
4.1	1.2
6.0	2.1
5.8	2.0
4.6	0.5
4.6	1.1

 ${\tt R}$ has a function for K-means in the ${\tt stats}$ package; this is probably already loaded

- let's use this for the Old Faithful data
- > library(datasets)
- > faith.2 <- kmeans(faithful,2)</pre>
- > names(faith.2)

> plot(faithful[,1],faithful[,2],col=faith.2\$cluste
+ pch=faith.2\$cluster,lwd=3)



K-Means in $\ensuremath{\mathbb{R}}$

K-means can be used for image segmentation

- partition image into multiple segments
- find boundaries of objects
- make art

k-means is fast and simple, but ...

- What if your data are discrete?
- What if each data point has more than one cluster? (digits vs. documents)
- What if you don't know the number of clusters?