Classification I: Logistic Regression and Naïve Bayes

Digging into Data

University of Maryland

February 24, 2014

COLLEGE OF INFORMATION STUDIES

Slides adapted from Hinrich Schütze and Lauren Hannah

Roadmap

- Classification
- Logistic regression
- Naïve Bayes
- Estimating probability distributions

Outline

Classification

- 2 Logistic Regression
- 3 Logistic Regression Example
- 4 Motivating Naïve Bayes Example
- 5 Naive Bayes Definition
- 6 Estimating Probability Distributions

) Wrapup

Given:

• A universe $\mathbb X$ our examples can come from (e.g., English documents with a predefined vocabulary)

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set *D* of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$

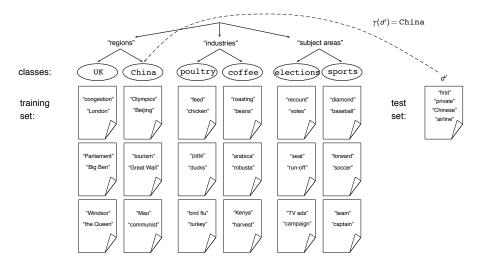
Given:

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \dots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set *D* of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$

Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma: \mathbb{X} \to \mathbb{C}$$

Topic classification



Examples of how search engines use classification

- Standing queries (e.g., Google Alerts)
- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search restrict search to a "vertical" like "related to health" (relevant to vertical vs. not)

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- $\bullet \rightarrow$ We need automatic methods for classification.

- There are "IDE" type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is expensive.

Classification methods: 3. Statistical/Probabilistic

- As per our definition of the classification problem text classification as a learning problem
- Supervised learning of a the classification function γ and its application to classifying new documents
- We will look at a couple of methods for doing this: Naive Bayes, Logistic Regression, SVM, Decision Trees
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.

Outline

Classification

Logistic Regression

- Logistic Regression Example
- 4 Motivating Naïve Bayes Example
- 5 Naive Bayes Definition
- 6) Estimating Probability Distributions

) Wrapup

Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, p(y|x)
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about p(y|x)? We need a more general framework ...

Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, p(y|x)
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about p(y|x)? We need a more general framework ...
- That framework is called logistic regression
 - Logistic: A special mathematical function it uses
 - Regression: Combines a weight vector with observations to create an answer
 - More general cookbook for building conditional probability distributions
- Naïve Bayes (later today) is a special case of logistic regression

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y = 0|X) = \frac{1}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(1)
$$P(Y = 1|X) = \frac{\exp\left[\beta_0 + \sum_i \beta_i X_i\right]}{1 + \exp\left[\beta_0 + \sum_i \beta_i X_i\right]}$$
(2)

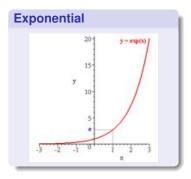
- Math is much hairier! (See optional reading)
- For shorthand, we'll say that

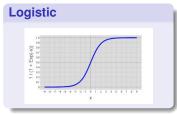
$$P(Y=0|X) = \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(3)

$$P(Y=1|X) = 1 - \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(4)

• Where $\sigma(z) = rac{1}{1 + exp[-z]}$

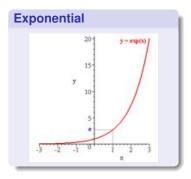
What's this "exp"?

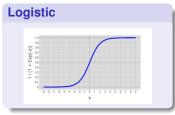




- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp"?





- exp[x] is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = rac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression

Outline

Classification

Description Logistic Regression

Logistic Regression Example

- 4 Motivating Naïve Bayes Example
- 5 Naive Bayes Definition
- 6) Estimating Probability Distributions

) Wrapup

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 1: Empty Document? X = {}

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} =$$

• $P(Y=1) = \frac{\exp[0.1]}{1+\exp[0.1]} =$

)
0
5
)

• What does Y = 1 mean?

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = .52$$

Bias β₀ encodes the prior probability of a class

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2	
$X = \{Mother, Nigeria\}$	

feature	coefficient	weight
bias	eta_{0}	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.11$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = .88$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

 $X = \{Mother, Work, Viagra, Mother\}$

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$$

Multiply feature presence by weight

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	eta_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

• What does Y = 1 mean?

Example 3

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$$

•
$$P(Y=1) =$$

 $\frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} = 0.30$

Multiply feature presence by weight

How is Logistic Regression Used?

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (where *y* is known)
- Details are somewhat mathematically hairy (uses searching along the derivative of conditional likelihood)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation

How is Logistic Regression Used?

- Given a set of weights $\vec{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\vec{\beta}$ that maximize the conditional likelihood on training data (where *y* is known)
- Details are somewhat mathematically hairy (uses searching along the derivative of conditional likelihood)
- Intuition: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights

Outline

Classification

- **D** Logistic Regression
- Logistic Regression Example

Motivating Naïve Bayes Example

- Naive Bayes Definition
- 6 Estimating Probability Distributions

) Wrapup

A Classification Problem

- Suppose that I have two coins, C₁ and C₂
- Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

C1: 0 1 1 1 1 C1: 1 1 0 C2: 1 0 0 0 0 0 0 1 C1: 0 1 C1: 1 1 0 1 1 1 C2: 0 0 1 1 0 1 C2: 1 0 0 0

• Now suppose I am given a new sequence, 0 0 1; which coin is it from?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1)$, $P(C_2)$
- Also easy to get $P(X_i = 1 | C_1)$ and $P(X_i = 1 | C_2)$
- By conditional independence,

$$P(X = 0 \, 1 \, 0 \, | \, C_1) = P(X_1 = 0 \, | \, C_1) P(X_2 = 1 \, | \, C_1) P(X_2 = 0 \, | \, C_1)$$

• Can we use these to get $P(C_1 | X = 001)$?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1) = 4/7$, $P(C_2) = 3/7$
- Also easy to get $P(X_i = 1 | C_1)$ and $P(X_i = 1 | C_2)$
- By conditional independence,

$$P(X = 0 \, 1 \, 0 \, | \, C_1) = P(X_1 = 0 \, | \, C_1) P(X_2 = 1 \, | \, C_1) P(X_2 = 0 \, | \, C_1)$$

• Can we use these to get $P(C_1 | X = 001)$?

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get P(C₁)=4/7, P(C₂)=3/7
- Also easy to get $P(X_i = 1 | C_1) = 12/16$ and $P(X_i = 1 | C_2) = 6/18$
- By conditional independence,

$$P(X = 0 \, 1 \, 0 \, | \, C_1) = P(X_1 = 0 \, | \, C_1) P(X_2 = 1 \, | \, C_1) P(X_2 = 0 \, | \, C_1)$$

• Can we use these to get $P(C_1 | X = 001)$?

A Classification Problem

Summary: have *P*(*data*|*class*), want *P*(*class*|*data*)

Solution: Bayes' rule!

$$P(class | data) = \frac{P(data | class)P(class)}{P(data)}$$
$$= \frac{P(data | class)P(class)}{\sum_{class=1}^{C} P(data | class)P(class)}$$

To compute, we need to estimate P(data | class), P(class) for all classes

Naive Bayes Classifier

This works because the coin flips are independent given the coin parameter. What about this case:

- want to identify the type of fruit given a set of features: color, shape and size
- color: red, green, yellow or orange (discrete)
- shape: round, oval or long+skinny (discrete)
- size: diameter in inches (continuous)

Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily independent:

Given category "apple," the color "green" has a higher probability given "size < 2":

P(green | size < 2, apple) > P(green | apple)

Using chain rule,

P(apple | green, round, size = 2) $= \frac{P(green, round, size = 2 | apple)P(apple)}{\sum_{fruits} P(green, round, size = 2 | fruit j)P(fruit j)}$ $\propto P(green | round, size = 2, apple)P(round | size = 2, apple)$ $\times P(size = 2 | apple)P(apple)$

But computing conditional probabilities is hard! There are many combinations of (*color*, *shape*, *size*) for each fruit.

Idea: assume conditional independence for all features given class,

P(green | round, size = 2, apple) = P(green | apple)P(round | green, size = 2, apple) = P(round | apple)P(size = 2 | green, round, apple) = P(size = 2 | apple)

Outline

Classification

- **D** Logistic Regression
- Logistic Regression Example
- 4 Motivating Naïve Bayes Example
- Naive Bayes Definition
- 6 Estimating Probability Distributions

) Wrapup

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document *d* being in a class *c* as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document *d* being in a class *c* as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document *d* being in a class *c* as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

- n_d is the length of the document. (number of tokens)
- P(w_i|c) is the conditional probability of term w_i occurring in a document of class c
- *P*(*w_i*|*c*) as a measure of how much evidence *w_i* contributes that *c* is the correct class.
- P(c) is the prior probability of c.
- If a document's terms do not provide clear evidence for one class vs. another, we choose the *c* with higher *P*(*c*).

- Our goal is to find the "best" class.
- The best class in Naive Bayes classification is the most likely or maximum a posteriori (MAP) class c map :

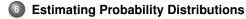
$$c_{\max} = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j | d) = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j) \prod_{1 \le i \le n_d} \hat{P}(w_i | c_j)$$

• We write \hat{P} for *P* since these values are *estimates* from the training set.

Outline

Classification

- 2 Logistic Regression
- Logistic Regression Example
- 4 Motivating Naïve Bayes Example
- Naive Bayes Definition



🔵 Wrapup

• Suppose we want to estimate $P(w_n = "buy" | y = SPAM)$.

• Suppose we want to estimate $P(w_n = "buy" | y = SPAM)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

• Suppose we want to estimate $P(w_n = "buy" | y = SPAM)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

• Maximum likelihood (ML) estimate of the probability is:

$$\hat{\beta}_i = \frac{n_i}{\sum_k n_k} \tag{5}$$

• Suppose we want to estimate $P(w_n = "buy" | y = SPAM)$.

buy	buy	nigeria	opportunity	viagra
nigeria	opportunity	viagra	fly	money
fly	buy	nigeria	fly	buy
money	buy	fly	nigeria	viagra

• Maximum likelihood (ML) estimate of the probability is:

$$\hat{\beta}_i = \frac{n_i}{\sum_k n_k} \tag{5}$$

• Is this reasonable?

The problem with maximum likelihood estimates: Zeros (cont)

 If there were no occurrences of "bagel" in documents in class SPAM, we'd get a zero estimate:

$$\hat{P}(\text{"bagel"} | \text{SPAM}) = \frac{T_{\text{SPAM}, \text{"bagel"}}}{\sum_{w' \in V} T_{\text{SPAM}, w'}} = 0$$

- \rightarrow We will get P(SPAM|d) = 0 for any document that contains bage!!
- Zero probabilities cannot be conditioned away.

- In computational linguistics, we often have a *prior* notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

$$\beta_{MAP} = \operatorname{argmax}_{\beta} f(x|\beta) g(\beta)$$
 (6)

• For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{7}$$

• α_i is called a smoothing factor, a pseudocount, etc.

• For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{7}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When α_i = 1 for all *i*, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).

• For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{7}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When α_i = 1 for all *i*, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions (just do this).
- To geek out, the set {a₁,..., a_N} parameterizes a Dirichlet distribution, which is itself a distribution over distributions and is the conjugate prior of the Multinomial (don't need to know this).

Why conditional independence?

- estimating multivariate functions (like P(X₁,...,X_m | Y)) is mathematically hard, while estimating univariate ones is easier (like P(X_i | Y))
- need less data to fit univariate functions well
- univariate estimators differ much less than multivariate estimator (low variance)
- ... but they may end up finding the wrong values (more bias)

To reduce the number of parameters to a manageable size, recall the *Naive Bayes* conditional independence assumption:

$$P(d|c_j) = P(\langle w_1, \ldots, w_{n_d} \rangle | c_j) = \prod_{1 \le i \le n_d} P(X_i = w_i | c_j)$$

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(X_i = w_i | c_j)$. Our estimates for these priors and conditional probabilities: $\hat{P}(c_j) = \frac{N_c+1}{N+|C|}$ and $\hat{P}(w|c) = \frac{T_{cw}+1}{(\sum_{w' \in V} T_{cw'})+|V|}$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time lg is logarithm base 2; In is logarithm base *e*.

$$gx = a \Leftrightarrow 2^a = x$$
 $\ln x = a \Leftrightarrow e^a = x$ (8)

- Since ln(xy) = ln(x) + ln(y), we can sum log probabilities instead of multiplying probabilities.
- Since In is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\max} = rg\max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \le i \le n_d} \hat{P}(w_i | c_j)
ight]$$

 $rg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \le i \le n_d} \ln \hat{P}(w_i | c_j)
ight]$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time lg is logarithm base 2; In is logarithm base *e*.

$$gx = a \Leftrightarrow 2^a = x$$
 $\ln x = a \Leftrightarrow e^a = x$ (8)

- Since ln(xy) = ln(x) + ln(y), we can sum log probabilities instead of multiplying probabilities.
- Since In is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\max} = \arg\max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \le i \le n_d} \hat{P}(w_i | c_j) \right]$$
$$\arg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \le i \le n_d} \ln \hat{P}(w_i | c_j) \right]$$

Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time lg is logarithm base 2; In is logarithm base *e*.

$$gx = a \Leftrightarrow 2^a = x$$
 $\ln x = a \Leftrightarrow e^a = x$ (8)

- Since ln(xy) = ln(x) + ln(y), we can sum log probabilities instead of multiplying probabilities.
- Since In is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

$$c_{\max} = \arg\max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \le i \le n_d} \hat{P}(w_i | c_j) \right]$$
$$\arg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \le i \le n_d} \ln \hat{P}(w_i | c_j) \right]$$

Outline

Classification

- 2 Logistic Regression
- Logistic Regression Example
- 4 Motivating Naïve Bayes Example
- 5 Naive Bayes Definition
- Estimating Probability Distributions

🕨 Wrapup

Equivalence of Naïve Bayes and Logistic Regression

Consider Naïve Bayes and logistic regression with two classes: (+) and (-).

Naïve BayesLogistic Regression
$$\hat{P}(c_{+}) \prod_{i} \hat{P}(w_{i}|c_{+})$$
 $\sigma\left(-\beta_{0}-\sum_{i}\beta_{i}X_{i}\right) = \frac{1}{1+\exp\left(\beta_{0}+\sum_{i}\beta_{i}X_{i}\right)}$ $\hat{P}(c_{-}) \prod_{i} \hat{P}(w_{i}|c_{-})$ $1-\sigma\left(-\beta_{0}-\sum_{i}\beta_{i}X_{i}\right) = \frac{\exp\left(\beta_{0}+\sum_{i}\beta_{i}X_{i}\right)}{1+\exp\left(\beta_{0}+\sum_{i}\beta_{i}X_{i}\right)}$

• These are actually the same if $w_0 = \sigma \left(\ln \left(\frac{p(c_+)}{1 - p(c_+)} \right) + \sum_j \ln \left(\frac{1 - P(w_j | c_+)}{1 - P(w_j | c_-)} \right) \right)$ • and $w_j = \ln \left(\frac{P(w_j | c_+)(1 - P(w_j | c_-))}{P(w_j | c_-)(1 - P(w_j | c_+))} \right)$

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)

Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- · Logistic regression better on medium-sized datasets
- On huge datasets, it doesn't really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)
- Don't need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression

- More classification
 - State-of-the-art models
 - Interpretable models
 - Not the same thing!
- What does it mean to have a good classifier?
- Running all these classifiers in Rattle