Classification I: Logistic Regression and Naïve Bayes

Digging into Data

University of Maryland

February 24, 2014

Slides adapted from Hinrich Schütze and Lauren Hannah
Roadmap

- Classification
- Logistic regression
- Naïve Bayes
- Estimating probability distributions
Formal definition of Classification

Given:

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
Given:

- A universe \mathcal{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$
Formal definition of Classification

Given:

- A universe \(\mathcal{X} \) our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes \(\mathcal{C} = \{c_1, c_2, \ldots, c_J\} \)
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathcal{C} = \{c_1, c_2, \ldots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $d \in \mathbb{X} \times \mathcal{C}$
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)

 Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)

- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$

 The classes are human-defined for the needs of an application (e.g., spam vs. ham).

- A training set D of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$

Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma : \mathbb{X} \rightarrow \mathbb{C}$$
Topic classification

classes:
- UK
 - “congestion”
 - “London”
- China
 - “Olympics”
 - “Beijing”
- poultry
 - “feed”
 - “chicken”
- coffee
 - “roasting”
 - “beans”
- elections
 - “recount”
 - “votes”
- sports
 - “diamond”
 - “baseball”

training set:
- “Parliament”
 - “Big Ben”
- tourism
 - “Great Wall”
- “pate”
 - “ducks”
- “arabica”
 - “robusta”
- “seat”
 - “run-off”
- “forward”
 - “soccer”
- “Windsor”
 - “the Queen”
- “Mao”
 - “communist”
- “bird flu”
 - “turkey”
- “Kenya”
 - “harvest”
- “TV ads”
 - “campaign”
- “team”
 - “captain”

test set:
- “first”
- “private”
- “Chinese”
- “airline”

\(\gamma(d’) = \text{China} \)
Examples of how search engines use classification

- Standing queries (e.g., Google Alerts)
- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or *vertical* search – restrict search to a “vertical” like “related to health” (relevant to vertical vs. not)
Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed

Very accurate if job is done by experts

Consistent when the problem size and team is small

Scaling manual classification is difficult and expensive.

→ We need automatic methods for classification.
There are “IDE” type development environments for writing very complex rules efficiently. (e.g., Verity)

Often: Boolean combinations (as in Google Alerts)

Accuracy is very high if a rule has been carefully refined over time by a subject expert.

Building and maintaining rule-based classification systems is expensive.
As per our definition of the classification problem – text classification as a learning problem

Supervised learning of a the classification function γ and its application to classifying new documents

We will look at a couple of methods for doing this: Naive Bayes, Logistic Regression, SVM, Decision Trees

No free lunch: requires hand-classified training data

But this manual classification can be done by non-experts.
Outline

1. Classification
2. Logistic Regression
3. Logistic Regression Example
4. Motivating Naïve Bayes Example
5. Naive Bayes Definition
7. Wrapup
Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, $p(y|x)$
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about $p(y|x)$? We need a more general framework . . .
Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, $p(y|x)$
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about $p(y|x)$? We need a more general framework . . .
- That framework is called logistic regression
 - Logistic: A special mathematical function it uses
 - Regression: Combines a weight vector with observations to create an answer
 - More general cookbook for building conditional probability distributions
- Naïve Bayes (later today) is a special case of logistic regression
Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- “Bias” β_0 (like intercept in linear regression)

$$P(Y = 0|X) = \frac{1}{1 + \exp \left[\beta_0 + \sum_i \beta_i X_i \right]}$$ \hspace{1cm} (1)$$

$$P(Y = 1|X) = \frac{\exp \left[\beta_0 + \sum_i \beta_i X_i \right]}{1 + \exp \left[\beta_0 + \sum_i \beta_i X_i \right]}$$ \hspace{1cm} (2)$$

- Math is much hairier! (See optional reading)
- For shorthand, we’ll say that

$$P(Y = 0|X) = \sigma \left(-\left(\beta_0 + \sum_i \beta_i X_i \right) \right)$$ \hspace{1cm} (3)$$

$$P(Y = 1|X) = 1 - \sigma \left(-\left(\beta_0 + \sum_i \beta_i X_i \right) \right)$$ \hspace{1cm} (4)$$

- Where $\sigma(z) = \frac{1}{1 + \exp[-z]}$
What's this “exp”?

Exponential

- $\exp[x]$ is shorthand for e^x
- e is a special number, about 2.71828
 - e^x is the limit of compound interest formula as compounds become infinitely small
 - It’s the function whose derivative is itself

Logistic

- The “logistic” function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an “S”
- Always between 0 and 1.
What’s this “exp”?

Exponential

- \(\exp[x] \) is shorthand for \(e^x \)
- \(e \) is a special number, about 2.71828
 - \(e^x \) is the limit of compound interest formula as compounds become infinitely small
 - It’s the function whose derivative is itself
- The “logistic” function is \(\sigma(z) = \frac{1}{1+e^{-z}} \)

Logistic

- Looks like an “S”
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression
Outline

1 Classification
2 Logistic Regression
3 Logistic Regression Example
4 Motivating Naïve Bayes Example
5 Naive Bayes Definition
6 Estimating Probability Distributions
7 Wrapup
Logistic Regression Example

Feature Coefficient Weight

<table>
<thead>
<tr>
<th>Feature</th>
<th>Coefficient</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Example 1: Empty Document?

$X = \{\}$

What does $Y = 1$ mean?
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Example 1: Empty Document?

$X = \{\}$

What does $Y = 1$ mean?

- $P(Y = 0) = \frac{1}{1 + \exp[0.1]} =$
- $P(Y = 1) = \frac{\exp[0.1]}{1 + \exp[0.1]} =$
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>−1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>−0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 1: Empty Document?

$X = \{\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1]} = 0.48$
- $P(Y = 1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$

Bias β_0 encodes the prior probability of a class
Logistic Regression Example

Example 2

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>"viagra"</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>"mother"</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>"work"</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>"nigeria"</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

$X = \{\text{Mother, Nigeria}\}$
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 2

$X = \{ \text{Mother, Nigeria} \}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 + 3.0]} = \text{value}$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 + 3.0]}{1 + \exp[0.1 - 1.0 + 3.0]} = \text{value}$

Include bias, and sum the other weights
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 2

$x = \{\text{Mother, Nigeria}\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 + 3.0]} = 0.11$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 + 3.0]}{1 + \exp[0.1 - 1.0 + 3.0]} = 0.88$

Include bias, and sum the other weights.
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 3

$X = \{\text{Mother, Work, Viagra, Mother}\}$
Logistic Regression Example

Feature Coefficients

<table>
<thead>
<tr>
<th>Feature</th>
<th>Coefficient</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>"viagra"</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>"mother"</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>"work"</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>"nigeria"</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 3

Let $X = \{ \text{Mother, Work, Viagra, Mother} \}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}$

- Multiply feature presence by weight
Logistic Regression Example

<table>
<thead>
<tr>
<th>feature</th>
<th>coefficient</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>bias</td>
<td>β_0</td>
<td>0.1</td>
</tr>
<tr>
<td>“viagra”</td>
<td>β_1</td>
<td>2.0</td>
</tr>
<tr>
<td>“mother”</td>
<td>β_2</td>
<td>-1.0</td>
</tr>
<tr>
<td>“work”</td>
<td>β_3</td>
<td>-0.5</td>
</tr>
<tr>
<td>“nigeria”</td>
<td>β_4</td>
<td>3.0</td>
</tr>
</tbody>
</table>

What does $Y = 1$ mean?

Example 3

$X = \{\text{Mother, Work, Viagra, Mother}\}$

- $P(Y = 0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$
- $P(Y = 1) = \frac{\exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.30$

- Multiply feature presence by weight
How is Logistic Regression Used?

- Given a set of weights $\tilde{\beta}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\tilde{\beta}$ that maximize the conditional likelihood on training data (where y is known)
- Details are somewhat mathematically hairy (uses searching along the derivative of conditional likelihood)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
How is Logistic Regression Used?

- Given a set of weights $\mathbf{\hat{\beta}}$, we know how to compute the conditional likelihood $P(y|\beta, x)$
- Find the set of weights $\mathbf{\hat{\beta}}$ that maximize the conditional likelihood on training data (where y is known)
- Details are somewhat mathematically hairy (uses searching along the derivative of conditional likelihood)
- **Intuition**: higher weights mean that this feature implies that this feature is a good this is the class you want for this observation
- Naïve Bayes is a special case of logistic regression that uses Bayes rule and conditional probabilities to set these weights
A Classification Problem

Suppose that I have two coins, C_1 and C_2

Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

C_1: 0 1 1 1 1
C_1: 1 1 0
C_2: 1 0 0 0 0 0 0 1
C_1: 0 1
C_1: 1 1 0 1 1 1
C_2: 0 0 1 1 0 1
C_2: 1 0 0 0

Now suppose I am given a new sequence, 0 0 1; which coin is it from?
A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1), P(C_2)$
- Also easy to get $P(X_i = 1 | C_1)$ and $P(X_i = 1 | C_2)$
- By conditional independence,

$$P(X = 010 | C_1) = P(X_1 = 0 | C_1)P(X_2 = 1 | C_1)P(X_2 = 0 | C_1)$$

- Can we use these to get $P(C_1 | X = 001)$?
A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1) = 4/7$, $P(C_2) = 3/7$
- Also easy to get $P(X_i = 1 | C_1)$ and $P(X_i = 1 | C_2)$
- By conditional independence,

$$P(X = 010 | C_1) = P(X_1 = 0 | C_1)P(X_2 = 1 | C_1)P(X_2 = 0 | C_1)$$

- Can we use these to get $P(C_1 | X = 001)$?
A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1) = 4/7$, $P(C_2) = 3/7$
- Also easy to get $P(X_i = 1 | C_1) = 12/16$ and $P(X_i = 1 | C_2) = 6/18$
- By conditional independence,

$$P(X = 010 | C_1) = P(X_1 = 0 | C_1)P(X_2 = 1 | C_1)P(X_2 = 0 | C_1)$$

- Can we use these to get $P(C_1 | X = 001)$?
A Classification Problem

Summary: have $P(data|class)$, want $P(class|data)$

Solution: Bayes’ rule!

$$P(class|data) = \frac{P(data|class)P(class)}{P(data)}$$

$$= \frac{P(data|class)P(class)}{\sum_{class=1}^{C} P(data|class)P(class)}$$

To compute, we need to estimate $P(data|class)$, $P(class)$ for all classes
This works because the coin flips are independent given the coin parameter. What about this case:

- want to identify the type of fruit given a set of features: color, shape and size
- color: red, green, yellow or orange (discrete)
- shape: round, oval or long+skinny (discrete)
- size: diameter in inches (continuous)
Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily independent:

Given category “apple,” the color “green” has a higher probability given “size < 2”:

\[P(\text{green} | \text{size} < 2, \text{apple}) > P(\text{green} | \text{apple}) \]
Naive Bayes Classifier

Using chain rule,

\[
P(\text{apple} | \text{green}, \text{round}, \text{size} = 2) = \frac{P(\text{green}, \text{round}, \text{size} = 2 | \text{apple}) P(\text{apple})}{\sum_{\text{fruits}} P(\text{green}, \text{round}, \text{size} = 2 | \text{fruit j}) P(\text{fruit j})} \times P(\text{green} | \text{round}, \text{size} = 2, \text{apple}) P(\text{round} | \text{size} = 2, \text{apple}) \\
\times P(\text{size} = 2 | \text{apple}) P(\text{apple})
\]

But computing conditional probabilities is hard! There are many combinations of (color, shape, size) for each fruit.
Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

\[
P(green | round, size = 2, apple) = P(green | apple) \\
P(round | green, size = 2, apple) = P(round | apple) \\
P(size = 2 | green, round, apple) = P(size = 2 | apple)
\]
Outline

1. Classification
2. Logistic Regression
3. Logistic Regression Example
4. Motivating Naïve Bayes Example
5. Naive Bayes Definition
7. Wrapup
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

$P(c)$ is the prior probability of c.

If a document's terms do not provide clear evidence for one class vs. another, we choose the c with higher $P(c)$.

$P(w_i|c)$ is the conditional probability of term w_i occurring in a document of class c as a measure of how much evidence w_i contributes that c is the correct class.
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document \(d \) being in a class \(c \) as follows:

\[
P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)
\]

\(n_d \) is the length of the document (number of tokens).
\(P(w_i|c) \) is the conditional probability of term \(w_i \) occurring in a document of class \(c \). It is a measure of how much evidence \(w_i \) contributes that \(c \) is the correct class.
\(P(c) \) is the prior probability of \(c \). If a document's terms do not provide clear evidence for one class vs. another, we choose the \(c \) with higher \(P(c) \).
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$

- n_d is the length of the document. (number of tokens)
- $P(w_i|c)$ is the conditional probability of term w_i occurring in a document of class c
- $P(w_i|c)$ as a measure of how much evidence w_i contributes that c is the correct class.
- $P(c)$ is the prior probability of c.
- If a document’s terms do not provide clear evidence for one class vs. another, we choose the c with higher $P(c)$.
Our goal is to find the “best” class.

The best class in Naive Bayes classification is the most likely or *maximum a posteriori (MAP)* class c_{map}:

$$c_{\text{map}} = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j|d) = \arg\max_{c_j \in \mathbb{C}} \hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i|c_j)$$

We write \hat{P} for P since these values are *estimates* from the training set.
Outline

1. Classification
2. Logistic Regression
3. Logistic Regression Example
4. Motivating Naïve Bayes Example
5. Naive Bayes Definition
7. Wrapup
How do we estimate a probability?

Suppose we want to estimate \(P(w_n = \text{“buy”} | y = \text{SPAM}) \).
How do we estimate a probability?

Suppose we want to estimate $P(w_n = \text{"buy"} | y = \text{SPAM})$.

<table>
<thead>
<tr>
<th>buy</th>
<th>buy</th>
<th>nigeria</th>
<th>opportunity</th>
<th>viagra</th>
</tr>
</thead>
<tbody>
<tr>
<td>nigeria</td>
<td>opportunity</td>
<td>viagra</td>
<td>fly</td>
<td>money</td>
</tr>
<tr>
<td>fly</td>
<td>buy</td>
<td>nigeria</td>
<td>fly</td>
<td>buy</td>
</tr>
<tr>
<td>money</td>
<td>buy</td>
<td>fly</td>
<td>nigeria</td>
<td>viagra</td>
</tr>
</tbody>
</table>
How do we estimate a probability?

Suppose we want to estimate \(P(w_n = \text{"buy"} | y = \text{SPAM}) \).

Maximum likelihood (ML) estimate of the probability is:

\[
\hat{\beta}_i = \frac{n_i}{\sum_k n_k} \tag{5}
\]
How do we estimate a probability?

- Suppose we want to estimate \(P(\, w_n = \text{"buy"} \mid y = \text{SPAM}) \).

 \[
 \hat{p}_i = \frac{n_i}{\sum_k n_k}
 \]

 (5)

- Is this reasonable?
The problem with maximum likelihood estimates: Zeros (cont)

- If there were no occurrences of “bagel” in documents in class SPAM, we’d get a zero estimate:

\[\hat{P}(\text{“bagel”} \mid \text{SPAM}) = \frac{T_{\text{SPAM, “bagel”}}}{\sum_{w' \in \mathcal{V}} T_{\text{SPAM}, w'}} = 0 \]

- We will get \(P(\text{SPAM} \mid d) = 0 \) for any document that contains bagel!

- Zero probabilities cannot be conditioned away.
How do we estimate a probability?

- In computational linguistics, we often have a prior notion of what our probability distributions are going to look like (for example, non-zero, sparse, uniform, etc.).
- This estimate of a probability distribution is called the maximum a posteriori (MAP) estimate:

\[
\beta_{\text{MAP}} = \arg\max_{\beta} f(x|\beta) g(\beta)
\] \hspace{1cm} (6)
How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k}$$

(7)

- α_i is called a smoothing factor, a pseudocount, etc.
How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like over words):

\[\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \] \hspace{2cm} (7)

- \(\alpha_i \) is called a smoothing factor, a pseudocount, etc.
- When \(\alpha_i = 1 \) for all \(i \), it’s called “Laplace smoothing” and corresponds to a uniform prior over all multinomial distributions (just do this).
How do we estimate a probability?

For a multinomial distribution (i.e. a discrete distribution, like over words):

\[\beta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \quad (7) \]

- \(\alpha_i \) is called a smoothing factor, a pseudocount, etc.
- When \(\alpha_i = 1 \) for all \(i \), it’s called “Laplace smoothing” and corresponds to a uniform prior over all multinomial distributions (just do this).
- To geek out, the set \(\{ \alpha_1, \ldots, \alpha_N \} \) parameterizes a Dirichlet distribution, which is itself a distribution over distributions and is the conjugate prior of the Multinomial (don’t need to know this).
Why conditional independence?

- estimating multivariate functions (like $P(X_1, \ldots, X_m \mid Y)$) is mathematically hard, while estimating univariate ones is easier (like $P(X_i \mid Y)$)
- need less data to fit univariate functions well
- univariate estimators differ much less than multivariate estimator (low variance)
- ... but they may end up finding the wrong values (more bias)
To reduce the number of parameters to a manageable size, recall the Naïve Bayes conditional independence assumption:

\[
P(d|c_j) = P(\langle w_1, \ldots, w_{n_d}\rangle|c_j) = \prod_{1 \leq i \leq n_d} P(X_i = w_i|c_j)
\]

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities \(P(X_i = w_i|c_j) \).

Our estimates for these priors and conditional probabilities:
\[
\hat{P}(c_j) = \frac{N_c + 1}{N + |C|}
\]

\[
\hat{P}(w|c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}
\]
Multiplying lots of small probabilities can result in floating point underflow.

From last time \(\lg \) is logarithm base 2; \(\ln \) is logarithm base \(e \).

\[
\lg x = a \iff 2^a = x \quad \ln x = a \iff e^a = x
\]

(8)

Since \(\ln(xy) = \ln(x) + \ln(y) \), we can sum log probabilities instead of multiplying probabilities.

Since \(\ln \) is a monotonic function, the class with the highest score does not change.

So what we usually compute in practice is:

\[
\text{c map} = \arg \max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right]
\]

\[
\arg \max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]
\]
Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \(\lg \) is logarithm base 2; \(\ln \) is logarithm base \(e \).

\[
\begin{align*}
\lg x &= a \iff 2^a = x \quad \ln x &= a \iff e^a = x
\end{align*}
\] (8)

- Since \(\ln(xy) = \ln(x) + \ln(y) \), we can sum log probabilities instead of multiplying probabilities.
- Since \(\ln \) is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

\[
\begin{align*}
\text{c map} &= \arg\max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right] \\
&\quad \arg\max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]
\end{align*}
\]
Multiplying lots of small probabilities can result in floating point underflow.

From last time \lg is logarithm base 2; \ln is logarithm base e.

$$\lg x = a \iff 2^a = x \quad \ln x = a \iff e^a = x \quad (8)$$

Since $\ln(xy) = \ln(x) + \ln(y)$, we can sum log probabilities instead of multiplying probabilities.

Since \ln is a monotonic function, the class with the highest score does not change.

So what we usually compute in practice is:

$$c \text{ map } = \arg \max_{c_j \in C} [\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j)]$$

$$\arg \max_{c_j \in C} [\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j)]$$
Outline

1. Classification
2. Logistic Regression
3. Logistic Regression Example
4. Motivating Naïve Bayes Example
5. Naive Bayes Definition
7. Wrapup
Consider Naïve Bayes and logistic regression with two classes: (+) and (-).

Naïve Bayes

\[
\hat{P}(c_+) \prod_i \hat{P}(w_i|c_+) = \hat{P}(c_-) \prod_i \hat{P}(w_i|c_-)
\]

Logistic Regression

\[
\sigma \left(-\beta_0 - \sum_i \beta_i X_i \right) = \frac{1}{1 + \exp \left(\beta_0 + \sum_i \beta_i X_i \right)} \\
1 - \sigma \left(-\beta_0 - \sum_i \beta_i X_i \right) = \frac{\exp \left(\beta_0 + \sum_i \beta_i X_i \right)}{1 + \exp \left(\beta_0 + \sum_i \beta_i X_i \right)}
\]

- These are actually the same if \(w_0 = \sigma \left(\ln \left(\frac{p(c_+)}{1-p(c_+)} \right) + \sum_j \ln \left(\frac{1-P(w_j|c_+)}{1-P(w_j|c_-)} \right) \right)\)

- and \(w_j = \ln \left(\frac{P(w_j|c_+)(1-P(w_j|c_-))}{P(w_j|c_-)(1-P(w_j|c_+))} \right)\)
Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn’t really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)
Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn’t really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (this is why naïve Bayes not in Rattle)
- Don’t need to memorize (or work through) previous slide—just understand that naïve Bayes is a special case of logistic regression
Next time . . .

- More classification
 - State-of-the-art models
 - Interpretable models
 - Not the same thing!

- What does it mean to have a good classifier?

- Running all these classifiers in Rattle