Linear Regression

Digging into Data

University of Maryland

February 17, 2014
Big Picture:

- **Classification** takes a set of features X and for each input x_i gives a discrete output y (e.g. given words in a document say whether it’s spam or not)

- **Regression** takes a set of features X and for each input x_i gives a continuous response y (e.g. given words in a document say how many stars the review gives to a product on Amazon)
Regression and Classification

Big Picture:

- **Classification** takes a set of features X and for each input x_i gives a discrete output y (e.g. given words in a document say whether it’s spam or not)

- **Regression** takes a set of features X and for each input x_i gives a continuous response y (e.g. given words in a document say how many stars the review gives to a product on Amazon)
Outline

1. Linear Regression
2. Fitting a Regression
3. Example
4. Regularized Regression
5. Wrapup
Data are the set of inputs and outputs, $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{n}$
In linear regression, the goal is to predict y from x using a linear function.
Examples of linear regression:

- given a child’s age and gender, what is his/her height?
- given unemployment, inflation, number of wars, and economic growth, what will the president’s approval rating be?
- given a browsing history, how long will a user stay on a page?
$f(x) = \beta_0 + \beta_1 x$

(x_i, y_i)
Often, we have a vector of inputs where each represents a different \textit{feature} of the data

\[\mathbf{x} = (x_1, \ldots, x_p) \]

The function fitted to the response is a linear combination of the covariates

\[f(\mathbf{x}) = \beta_0 + \sum_{j=1}^{p} \beta_j x_j \]
Often, it is convenient to represent \mathbf{x} as $(1, x_1, \ldots, x_p)$

In this case \mathbf{x} is a vector, and so is $\boldsymbol{\beta}$ (we’ll represent them in bold face)

This is the dot product between these two vectors

This then becomes a sum (this should be familiar!)

$$\beta \mathbf{x} = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$$
Hyperplanes: Linear Functions in Multiple Dimensions

Hyperplane

Hyperplane
Covariates

- Do not need to be raw value of x_1, x_2, \ldots
- Can be any feature or function of the data:
 - Transformations like $x_2 = \log(x_1)$ or $x_2 = \cos(x_1)$
 - Basis expansions like $x_2 = x_1^2$, $x_3 = x_1^3$, $x_4 = x_1^4$, etc
 - Indicators of events like $x_2 = 1\{ -1 \leq x_1 \leq 1 \}$
 - Interactions between variables like $x_3 = x_1 x_2$

- Because of its simplicity and flexibility, it is one of the most widely implemented regression techniques
Idea: minimize the Euclidean distance between data and fitted line

$$RSS(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta x_i)^2$$
How to Find β

- Use calculus to find the value of β that minimizes the RSS.
- The optimal value is

$$\hat{\beta} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}$$
Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates.
- We just find the point on the line that corresponds to the new input:

$$\hat{y} = \beta_0 + \beta_1 x$$ \hspace{1cm} (1)
After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates.

We just find the point on the line that corresponds to the new input:

$$\hat{y} = \beta_0 + \beta_1 x$$ \hspace{1cm} (1)
Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates.
- We just find the point on the line that corresponds to the new input:

$$\hat{y} = 1.0 + 0.5x$$ (1)
After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates.

We just find the point on the line that corresponds to the new input:

$$\hat{y} = 1.0 + 0.5 \times 5$$

(1)
Prediction

- After finding $\hat{\beta}$, we would like to predict an output value for a new set of covariates.
- We just find the point on the line that corresponds to the new input:

$$\hat{y} = 3.5$$ (1)

\[y = 1.0 + 0.5x \]
Probabilistic Interpretation

- Our analysis so far has not included any probabilities.
- Linear regression does have a *probabilistic* (probability model-based) interpretation.
Probabilistic Interpretation

- Linear regression assumes that response values have a Gaussian distribution around the linear mean function,

\[Y_i | x_i, \beta \sim N(x_i\beta, \sigma^2) \]

- This is a *discriminative model*, where inputs \(x \) are not modeled

- Minimizing RSS is equivalent to maximizing conditional likelihood
Outline

1. Linear Regression
2. Fitting a Regression
3. Example
4. Regularized Regression
5. Wrapup
Example: Old Faithful
Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption given the duration of the current eruption

```r
> library(datasets)
> names(faithful)
[1] "eruptions" "waiting"
> attach(faithful)
> plot(eruptions,waiting,xlab="Current Eruption Time (min)", + ylab="Waiting Time (min)",pch=16)
```
Example: Old Faithful

![Scatter plot of Current Eruption Time (min) vs Waiting Time (min) with data points representing eruption intervals. The plot shows a positive correlation between the two variables.](https://example.com/old_faithful_plot.png)
Regressions in Rattle

Digging into Data (UMD)

Linear Regression

February 17, 2014 22 / 41

Table of Models

<table>
<thead>
<tr>
<th>Data</th>
<th>Explore</th>
<th>Test</th>
<th>Transform</th>
<th>Cluster</th>
<th>Associate</th>
<th>Model</th>
<th>Evaluate</th>
<th>Log</th>
</tr>
</thead>
</table>

- **Type:**
 - ☐ Tree
 - ☐ Forest
 - ☐ Boost
 - ☐ SVM
 - ☐ Linear
 - ☐ Neural Net
 - ☐ Survival
 - ☐ All
 - ☐ Numeric
 - ☐ Generalized
 - ☐ Poisson
 - ☐ Logistic
 - ☐ Probit
 - ☐ Multinomial

Plot
Example: Old Faithful

To fit a linear model in R, Rattle uses the \texttt{lm()} function, which stands for "linear model"

\begin{verbatim}
> fit.lm <- lm(waiting ~ eruptions)
> fit.lm

Call:
\texttt{lm(formula = waiting \sim eruptions)}

Coefficients:
(Intercept) eruptions
 33.47 10.73
\end{verbatim}
Example: Old Faithful

We can plot our data and make a function for new predictions

```r
> # Plot a line on the data
> abline(fit.lm,col="red",lwd=3)
>
> # Make a function for prediction
> faithful.fit <- function(x) fit.lm$coefficients[1] +
    fit.lm$coefficients[2]*x
> x.pred <- c(2.0, 2.7, 3.8, 4.9)
> faithful.fit(x.pred)
[1] 54.93368 62.44443 74.24703 86.04964
```
Example: Old Faithful

![Scatter plot with linear regression line](image-url)
Multivariate Linear Regression

Example: \(p = 1 \), have 2 points

- Have \(p + 1 \) or fewer points, line goes through all (or \(p \) with mean 0 data)
- Have more than \(p + 1 \) (but still close to that number), line goes close to all points
Noise, Bias, Variance Tradeoff

- **Noise**: Lower bound on performance
- **Bias**: Error as a result as choosing the *wrong* model
- **Variance**: Variation due to training sample and randomization
Noise, Bias, Variance Tradeoff

- **Noise**: Lower bound on performance
- **Bias**: Error as a result as choosing the *wrong* model
- **Variance**: Variation due to training sample and randomization

- No model is perfect
- More complex models are more susceptible to errors due to variance
Why linear regression:

- has few parameters to estimate (p)
- really restrictive model–low variance, higher bias

- should be good for data with few observations, large number of covariates...
- ... but we can’t use it in this situation
Multivariate Linear Regression

Idea: if we have a large number of covariates compared to observations, say $n < 2p$, **best to estimate most coefficients as 0**!

- not enough info to determine all coefficients
- try to estimate ones with strong signal
- set everything else to 0 (or close)

Coefficients of 0 may not be a bad assumption...

If we have 1,000s of coefficients, are they all equally important?
Example: microarray gene expression data

- gene expression: want to measure the level at which information in a gene is used in the synthesis of a functional gene product (usually protein)
- can use gene expression data to determine subtype of cancer (e.g. which type of Lymphoma B?) or predict recurrence, survival time, etc
- problem: thousands of genes, hundreds of patients, $p > n$!

Intuition: only a handful of genes should affect outcomes
gene expression levels are continuous values
data: observation i is gene expression levels from patient i, attached to outcome for patient (survival time)
covariates: expression levels for p genes
collinearity: does it matter which gene is selected for prediction? No!
overfitting: now fitting p' non-0 coefficients to n observations with $p' \ll n$ means less fitting of noise
Regularized Linear Regression

Regularization:
- still minimize the RSS
- place a penalty on large values for β_1, \ldots, β_p (why not β_0? can always easily estimate mean)
- add this penalty to the objective function
- solve for $\hat{\beta}$!

New objective function:

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} \text{penalty}(\beta_j)$$

λ acts as a weight on penalty: low values mean few coefficients near 0, high values mean many coefficients near 0.
Regularized Linear Regression

Regularization:

- still minimize the RSS
- place a penalty on large values for β_1, \ldots, β_p (why not β_0? can always easily estimate mean)
- add this penalty to the objective function
- solve for $\hat{\beta}$!

New objective function:

$$
\hat{\beta} = \arg \min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda \sum_{j=1}^{p} \text{penalty} (\beta_j)
$$

λ acts as a weight on penalty: low values mean few coefficients near 0, high values mean many coefficients near 0
Regularized Linear Regression

Regularization:
- still minimize the RSS
- place a *penalty* on large values for β_1, \ldots, β_p (why not β_0? can always easily estimate mean)
- add this penalty to the objective function
- solve for $\hat{\beta}$!

New objective function:

$$
\hat{\beta} = \text{arg min}_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} \text{penalty}(\beta_j)
$$

λ acts as a weight on penalty: low values mean few coefficients near 0, high values mean many coefficients near 0
Regularized Linear Regression

Regularization:
- still minimize the RSS
- place a penalty on large values for β_1, \ldots, β_p (why not β_0? can always easily estimate mean)
- add this penalty to the objective function
- solve for $\hat{\beta}$!

New objective function:

$$\hat{\beta} = \arg \min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} \text{penalty}(\beta_j)$$

λ acts as a weight on penalty: low values mean few coefficients near 0, high values mean many coefficients near 0.
Regularized Linear Regression

Regularization: what is a good penalty function?

Same as penalties used to fit errors:

- Ridge regression (squared penalty):
 \[
 \hat{\beta}_{Ridge} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2
 \]

- Lasso regression (absolute value penalty):
 \[
 \hat{\beta}_{Lasso} = \arg\min_{\beta} \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|
 \]
Comparing Ridge and Lasso

<table>
<thead>
<tr>
<th>Objective</th>
<th>Ridge</th>
<th>Lasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$</td>
<td>$(X^T X + \lambda I)^{-1} X^T y$</td>
<td>$\frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \sum_{j=0}^{p}</td>
</tr>
<tr>
<td></td>
<td>most close to 0</td>
<td>not closed form</td>
</tr>
<tr>
<td></td>
<td>robust to changes in X, y</td>
<td>most exactly 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not robust to changes in X, y</td>
</tr>
</tbody>
</table>

Regularized linear regression is fantastic for low signal datasets or those with $p >> n$

- Ridge: good when many coefficients affect value but not large (gene expression)
- Lasso: good when you want an *interpretable* estimator
Choosing λ

Both Ridge and Lasso have a tunable parameter, λ

- use cross validation to find best λ

$$\hat{\lambda} = \arg \min \lambda \sum_{i=1}^{n} \left(y_i - x_i \hat{\beta}_{-i, \lambda} \right)^2$$

- try out many values

- see how well it works on “development” data
Outline

1 Linear Regression

2 Fitting a Regression

3 Example

4 Regularized Regression

5 Wrapup
Regression

- Workhorse technique of data analysis
- Fundamental tool that we will use later for classification ("Logistic Regression")
- Important to understand interpretation of regression parameters
In Class

- We’ll try out regression on a newspaper dataset
- Make predictions
- Build intuitions about what a good regression looks like
Regression to predict home prices
Competition with your classmates
Linear regression will work okay, but to do well, you’ll need regularized regression