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Regression and Classification

Big Picture:

Classification takes a set of features X and for each input x
i

gives a
discrete output y (e.g. given words in a document say whether it’s
spam or not)

Regression takes a set of features X and for each input x
i

gives a
continuous response y (e.g. given words in a document say how many
stars the review gives to a product on Amazon)
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Linear Regression
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Data are the set of inputs and outputs, D = {(x
i

, y
i

)}n
i=1
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Linear Regression

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−6
−4

−2
0

2
4

6

x

y

In linear regression, the goal is to predict y from x using a linear function
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Linear Regression
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Examples of linear regression:

given a child’s age and gender, what is his/her height?

given unemployment, inflation, number of wars, and economic
growth, what will the president’s approval rating be?

given a browsing history, how long will a user stay on a page?
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Linear Regression
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(xi, yi )

f (x) = !0 +!1x
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Multiple Covariates

Often, we have a vector of inputs where each represents a di↵erent feature
of the data

x = (x
1

, . . . , x
p

)

The function fitted to the response is a linear combination of the covariates

f (x) = �
0

+
pX

j=1

�
j

x

j
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Multiple Covariates

Often, it is convenient to represent x as (1, x
1

, . . . , x
p

)

In this case x is a vector, and so is � (we’ll represent them in bold
face)

This is the dot product between these two vectors

This then becomes a sum (this should be familiar!)

�x = �
0

+
pX

j=1

�
j

x

j
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Hyperplanes: Linear Functions in Multiple Dimensions

Hyperplane
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Covariates

Do not need to be raw value of x
1

, x
2

, . . .

Can be any feature or function of the data:
I Transformations like x

2

= log(x
1

) or x
2

= cos(x
1

)
I Basis expansions like x

2

= x

2

1

, x
3

= x

3

1

, x
4

= x

4

1

, etc
I Indicators of events like x

2

= 1{�1x

1

1}
I Interactions between variables like x

3

= x

1

x

2

Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Fitting a Linear Regression
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Idea: minimize the Euclidean distance between data and fitted line

RSS(�) =
1

2

nX

i=1

(y
i

� �x
i

)2
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How to Find �

Use calculus to find the value of � that minimizes the RSS

The optimal value is

�̂ =

P
n

i=1

y

i

x

iP
n

i=1

x

2

i
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Prediction

After finding �̂, we would like to predict an output value for a new set
of covariates

We just find the point on the line that corresponds to the new input:

ŷ = �
0

+ �
1

x (1)
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Prediction

After finding �̂, we would like to predict an output value for a new set
of covariates

We just find the point on the line that corresponds to the new input:

ŷ = 1.0 + 0.5x (1)

y=1.0 + 0.5x
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Prediction

After finding �̂, we would like to predict an output value for a new set
of covariates
We just find the point on the line that corresponds to the new input:

ŷ = 1.0 + 0.5 ⇤ 5 (1)

y=1.0 + 0.5x

x=5.0
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Prediction

After finding �̂, we would like to predict an output value for a new set
of covariates
We just find the point on the line that corresponds to the new input:

ŷ = 3.5 (1)

y=1.0 + 0.5x

x=5.0

Digging into Data (UMD) Linear Regression February 17, 2014 15 / 41



Probabilistic Interpretation

Our analysis so far has not included any probabilities

Linear regression does have a probabilisitc (probability model-based)
interpretation
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Probabilistic Interpretation

Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Y

i

| x
i

,� ⇠ N(x
i

�,�2)

This is a discriminative model, where inputs x are not modeled
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Minimizing RSS is equivalent to maximizing conditional likelihood
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Example: Old Faithful
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Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption
given the duration of the current eruption

> library(datasets)

> names(faithful)

[1] "eruptions" "waiting"

> attach(faithful)

> plot(eruptions,waiting,xlab="Current Eruption Time (min)",

+ ylab="Waiting Time (min)",pch=16)
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Example: Old Faithful
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Regressions in Rattle
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Example: Old Faithful

To fit a linear model in R, Rattle uses the lm( ) function, which stands for
“linear model”

> fit.lm <- lm(waiting ~ eruptions)

> fit.lm

Call:

lm(formula = waiting ~ eruptions)

Coefficients:

(Intercept) eruptions

33.47 10.73

> names(fit.lm)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"
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Example: Old Faithful

We can plot our data and make a function for new predictions

> # Plot a line on the data

> abline(fit.lm,col="red",lwd=3)

>

> # Make a function for prediction

> fit.lm$coefficients[1]

(Intercept)

33.4744

> fit.lm$coefficients[2]

eruptions

10.72964

> faithful.fit <- function(x) fit.lm$coefficients[1] +

fit.lm$coefficients[2]*x

> x.pred <- c(2.0, 2.7, 3.8, 4.9)

> faithful.fit(x.pred)

[1] 54.93368 62.44443 74.24703 86.04964
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Example: Old Faithful

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

Current Eruption Time (min)

W
ai

tin
g 

Ti
m

e 
(m

in
)

Digging into Data (UMD) Linear Regression February 17, 2014 25 / 41



Outline
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2 Fitting a Regression
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Multivariate Linear Regression

Example: p = 1, have 2 points

●

●

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

●

●

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x
y

Have p + 1 or fewer points, line goes through all (or p with mean 0
data)
Have more than p + 1 (but still close to that number), line goes close
to all points
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Noise, Bias, Variance Tradeo↵

Noise: Lower bound on
performance

Bias: Error as a result as
choosing the wrong model

Variance: Variation due to
training sample and
randomization

No model is perfect

More complex models are more susceptible to errors due to variance
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Multivariate Linear Regression

Why linear regression:

has few parameters to estimate (p)

really restrictive model–low variance, higher bias

θ"

θ"

θ"

θ"

BI
AS

%
lo
w
"

hi
gh
"

VARIANCE%low" high"

should be good for data with few observations, large number of

covariates...

... but we can’t use it in this situation
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Multivariate Linear Regression

Idea: if we have a large number of covariates compared to observations,
say n < 2p, best to estimate most coe�cients as 0!

not enough info to determine all coe�cients

try to estimate ones with strong signal

set everything else to 0 (or close)

Coe�cients of 0 may not be a bad assumption...

If we have 1,000s of coe�cients, are they all equally important?
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Gene Expression

Example: microarray gene expression data

gene expression: want to measure the level at which information in a
gene is used in the synthesis of a functional gene product (usually
protein)

can use gene expression data to determine subtype of cancer (e.g.
which type of Lymphoma B?) or predict recurrence, survival time, etc

problem: thousands of genes, hundreds of patients, p > n!

Intuition: only a handful of genes should a↵ect outcomes
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Gene Expression

gene expression levels are continuous values

data: observation i is gene expression levels from patient i , attached
to outcome for patient (survival time)

covariates: expression levels for p genes
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Gene Expression

collinearity: does it matter which gene is selected for prediction? No!

overfitting: now fitting p

0 non-0 coe�cients to n observations with
p

0 << n means less fitting of noise
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Regularized Linear Regression

Regularization:

still minimize the RSS

place a penalty on large values for �
1

, ..., �
p

(why not �
0

? can always
easily estimate mean)

add this penalty to the objective function

solve for �̂!

New objective function:

�̂ = argmin
�

1

2

nX

i=1

(y
i

� x

i

�)2 + �
pX

j=1

penalty(�
j

)

� acts as a weight on penalty: low values mean few coe�cients near 0,
high values mean many coe�cients near 0
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Regularized Linear Regression

Regularization: what is a good penalty function?

Same as penalties used to fit errors:

Ridge regression (squared penalty):

�̂Ridge = argmin
�

1

2

nX

i=1

(y
i

� x

i

�)2 + �
pX

j=1

�2

j

Lasso regression (absolute value penalty):

�̂Lasso = argmin
�

1

2

nX

i=1

(y
i

� x

i

�)2 + �
pX

j=1

|�
j

|
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Comparing Ridge and Lasso

Ridge Lasso

Objective 1

2

P
n

i=1

(y
i

� x

i

�)2 + �
P

p

j=0

�2

j

1

2

P
n

i=1

(y
i

� x

i

�)2 + �
P

p

j=0

|�
j

|
Estimator

�
X

T

X+ �I
��1

X

T

y not closed form
Coe�cients most close to 0 most exactly 0
Stability robust to changes in X, y not robust to changes in X, y

Regularized linear regression is fantastic for low signal datasets or those
with p >> n

Ridge: good when many coe�cients a↵ect value but not large (gene
expression)

Lasso: good when you want an interpretable estimator
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Choosing �

Both Ridge and Lasso have a tunable parameter, �

use cross validation to find best �

�̂ = argmin
�

nX

i=1

⇣
y

i

� x

i

�̂�i ,�

⌘
2

try out many values

see how well it works on “development” data
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Regression

Workhorse technique of data analysis

Fundamental tool that we will use later for classification (“Logistic
Regression”)

Important to understand interpretation of regression parameters
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In Class

We’ll try out regression on a newspaper dataset

Make predictions

Build intuitions about what a good regression looks like

Digging into Data (UMD) Linear Regression February 17, 2014 40 / 41



Homework 2

Regression to predict home prices

Competition with your classmates

Linear regression will work okay, but to do well, you’ll need regularized
regression
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