Properties of Data

Digging into Data

University of Maryland

February 11, 2013

COLLEGE OF INFORMATION STUDIES

ggplot2 material adapted from Karthik Ram

Roadmap

Getting and cleaning data

- Unavoidable step
- Example of how I do it
- Goal
 - Not to teach you how
 - What end results you need to tell stories from data
 - Telling those stories with pictures
 - Same thing necessary for making predictions and clustering
 - Homework 1
- ggplot2
- CaBi

Outline

Data Terminology

- 2 Testbed: Capital Bikeshare
- Over the second state of the second state o
 - 4 ggplot2
 - 5 ggplot2 with "real" data
 - 6 Wrapup

- 31

・ロン ・四 ・ ・ ヨン ・ ヨン

(Confusing) Terminology

- A dataset has different components
- Input: what you always know
 - Sometimes called independent variable
 - Sometimes called regressor
 - Sometimes called feature
- Output: what you're trying to learn
 - Sometimes called independent variable
 - Sometimes called the regressand
 - Sometimes called the response variable
 - Sometimes called the "label"

(Confusing) Terminology

- A dataset has different components
- Input: what you always know
 - Sometimes called independent variable
 - Sometimes called regressor
 - Sometimes called feature
- Output: what you're trying to learn
 - Sometimes called independent variable
 - Sometimes called the regressand
 - Sometimes called the response variable
 - Sometimes called the "label"
 - Does not exist for unsupervised learning

- But not all data are usable
- Most data also have an identifier
- Could also be metadata
 - When data was collected
 - Who collected it
 - How much it cost
- Often important to exclude such data from your algorithms

< 🗇 🕨

Terminology

Discrete Data

- Also called categoric
- Bins that you group data into
- There is no "in between"
- You can ask most frequent value

Continuous Data

- Also called numeric
- Numeric values that represent data
- There is an "in between"
- You can take the average
- It makes sense to ask questions like what if this were 10% more X

Outline

Data Terminology

- 2 Testbed: Capital Bikeshare
- 3 Visualizing and Summarizing Data in Rattle
- 4 ggplot2
- 5 ggplot2 with "real" data
- 6) Wrapup

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Capital Bikeshare

- Until this year, largest bikeshare system in US
- Publicly share data
- Important problems:
 - Where should new stations be?
 - Rebalancing
 - Pricing
 - Coordinating with other transit

< 🗗 🕨

CSV File

http://www.capitalbikeshare.com/trip-history-data

🔄 🔿 🗙 🐔 🗋 www.capitalbikeshare.com/assets/files/trip-history-data/2012-4th-quarter.csv

Duration,Start date,Start Station,End date,End Station,Bike#,Subscription Type Oh 7m 28s,12/31/2012 23:58,Bastern Market Metro / Pennsylvania Ave & 7th St SE,1/1/2013 0:05, Oh 6m 24s,12/31/2012 23:55,14th & V St NW,1/1/2013 0:02,Massachusetts Ave & Dupont Circle NW, Oh 6m 58s,12/31/2012 23:56,14th & V St NW,1/1/2013 0:03,Massachusetts Ave & Dupont Circle NW, 2h 23m 50s,12/31/2012 23:51,Lincoln Park / 13th & East Capitol St NE ,1/1/2013 2:15,Lincoln P ,W00704,Casual

(日) (同) (三) (三)

- What data are there?
- What information do you want?
- How to get from point A to point B?

< 4 ► >

- What data are there?
- What information do you want?
- How to get from point A to point B?
 - More art than science
 - No right answers

Adding it to Google Docs

Import into Google Spreadsheet

Untitled spreadsheet

Digging into Data (UMD)

- N

3

Adding it to Google Docs

Loads nicely into columns

Digging into Data (UMD)

Properties of Data

February 11, 2013 11 / 53

It would be nice to have more

- Real world locations
- Elevation
- CaBi has some of this information
- Google (Maps) knows the rest . . .

< 🗗 🕨

Adding it to Google Docs

http://www.capitalbikeshare.com/data/stations/bikeStations.xml

Creating a new sheet just for stations

< 一型

Load columns from the xml file

and a second and			tations/bikeStations		
Α	B	С	D		E
ID	Station Name	Lat	Long		Elevation
1	20th & Bell St	source: http://www.capitalbikeshare.com/		512	#ERROR!
2	Pentagon City Metro / 12th & Hayes St			986	
3	20th & Crystal Dr			492	
4	15th & Crystal Dr			276	

We now have columns for lat, long for every station

3

(日) (同) (三) (三)

Now we can attach a location to each row in the original sheet

Α	B	c	D	E	F	G	н	1
Duration	Start date	Start Station	End date	End Station	Bike#	Subscripti Type	LatStart	LongStart
0h 7m 28s	12/31/201 23:58:00			14th & D	W01301	Subscribe	38,884	=vlookup(C2,stationsIA:C,3,faise

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adding it to Google Docs

Now we've added neat new columns to the spreadsheet; time to download

Share .		a + <u>A</u>	- A	· III		B 20 7 1
New Open	*	ε	1		w.	
Rename Make a copy Import		endStatio	bke	eubeoriptic		BIRNE OF
Sea revision history Spreadsheet settings	Mula	tein & D St SE Massochu Ave & Dupont	W01301	Subscribe		30.884-N 99
Download as Publish to the web Email colleborations	Moreaft Excel (xite) OpenDocument Formet (ode) PDF Document (pdf)					
Email as attachment.	10P	Plain Te	of [34, 64	d Values (.co mont sheet) current shee		ni sheet)

3

E 6 4 E

rides <- read.csv("data/cabi-rides.ext.csv")</pre>

- Creates a "data frame"
- This is the basic unit of R data (Rattle creates these automatically for you)
- Very easy to add columns
- Use the \$ to access columns

Outline

Data Terminology

2 Testbed: Capital Bikeshare

Olympical Summarizing Data in Rattle

4) ggplot2

5 ggplot2 with "real" data

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Getting Output Directly

- "Explore" tab
- Click: "summary"

duration		startSta	ation
Min. : 0.0000	Massachusetts Ave & Dupont Circle NW	:	116
1st Qu.: 0.1000	15th & P St NW	:	97
Median : 0.1667	Columbus Circle / Union Station	:	94
Mean : 0.2418	Thomas Circle	:	79
3rd Qu.: 0.2667	Eastern Market Metro / Pennsylvania Ave & 7t	h St SE:	74
Max. :13.5667	17th & Corcoran St NW	:	70
NA's : 2.0000	(Other)	:3	3629

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Getting Output Directly

- "Explore" tab
- Type: "summary"

en	dStation	distance	startHour
Massachusetts Ave & Dupont Circle	NW: 148	Min. : 0.0	Min. : 0.1333
15th & P St NW	: 103	1st Qu.: 921.5	1st Qu.:10.5500
Thomas Circle	: 94	Median : 1515.5	Median :15.1500
17th & Corcoran St NW	: 86	Mean : 1785.3	Mean :14.6237
Columbus Circle / Union Station	: 82	3rd Qu.: 2402.2	3rd Qu.:18.3500
North Capitol St & F St NW	: 74	Max. :13166.5	Max. :23.9667
(Other)	: 3572		NA's : 1.0000

- 34

イロン 不聞と 不同と 不同と

Descriptive Statistics: Quartiles

- Order your data
- Find the middle data point this is your median
 - If even number of data points, average points in the middle
- Repeat on two halves on either side of median these are your first and third quartiles

Digging into Data (UMD)

Descriptive Statistics

65, 65, 70, 75, 80, 80, 85, 90, 95, 100

median of lower part, first quartile median of upper part, third quartile

- min smallest data point
- max largest data point
- mean sum of all data divided by number of data points

Descriptive Statistics

65, 65, 70, 75, 80, 80, 85, 90, 95, 100

median of lower part, first quartile median of upper part, third quartile

- min smallest data point
- max largest data point
- mean sum of all data divided by number of data points

$$\mu = \sum_{i} x_i / N \tag{1}$$

- Are the min / max reasonable?
- Is there a lot of missing data (NA)?
- Do the most frequent levels for categorical data make sense?

- ∢ 🗇 እ

Box Plots

- Show median, mean, Q1, Q2, max and min
- Show if distributions are skewed
- Easier to see than reading off numbers
- Introduced by Tukey
- Under "Explore", "Distributions"

Outline

Data Terminology

- 2 Testbed: Capital Bikeshare
- Over the second state of the second state o

4 ggplot2

5 ggplot2 with "real" data

6 Wrapup

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Install some packages (make sure you also have recent copies of reshape2 and plyr)

install.packages("ggplot2", dependencies = TRUE)

∃ ► < ∃ ►</p>

Image: A matrix of the second seco

- Ugly, laborious, and verbose
- There are better ways to describe statistical visualizations.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Follows a grammar, just like any language.
- It defines basic components that make up a sentence. In this case, the grammar defines components in a plot.
- Grammar of graphics originally coined by Lee Wilkinson

- Supports a continuum of expertise.
- Get started right away but with practice you can effortless build complex, publication quality figures.
- Common pitfal:
 - Never use qplot short for quick plot.
 - You'll end up unlearning and relearning a good bit.

3

- 4 同 6 4 日 6 4 日 6

- **ggplot** The main function where you specify the dataset and variables to plot
- geoms geometric objects
 - geom_point(), geom_bar(), geom_density(), geom_line(), geom_area()
- aes aesthetics
 - shape, transparency (alpha), color, fill, linetype.
- scales Define how your data will be plotted
 - continuous, discrete, log

- 3

イロト 不得下 イヨト イヨト

head(iris)

##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
## 1	5.1	3.5	1.4	0.2	setosa
## 2	4.9	3.0	1.4	0.2	setosa
## 3	4.7	3.2	1.3	0.2	setosa
## 4	4.6	3.1	1.5	0.2	setosa
## 5	5.0	3.6	1.4	0.2	setosa
## 6	5.4	3.9	1.7	0.4	setosa

3

<ロ> (日) (日) (日) (日) (日)

Let's try an example

ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point()


```
ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width))
+ geom_point()
myplot <- ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width))
myplot + geom_point()</pre>
```

- Specify the data and variables inside the ggplot function.
- Anything else that goes in here becomes a global setting.
- Then add layers of geometric objects, statistical models, and panels.

Scatter Plots: Increase the size of points

ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point(size = 3)

Digging into Data (UMD)

February 11, 2013 29 / 53

Scatter Plots: Add some color

ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
geom_point(size = 3)

Scatter Plots: Differentiate points by shape

ggplot(iris, aes(Sepal.Length, Sepal.Width, color = Species)) +
geom_point(aes(shape = Species), size = 3)

31 / 53

Boxplots

See ?geom_boxplot for list of options

```
library(MASS)
ggplot(birthwt, aes(factor(race), bwt)) + geom_boxplot()
```


32 / 53

Histograms

See ?geom_histogram for list of options

```
h <- ggplot(faithful, aes(x = waiting))
h + geom_histogram(binwidth = 30, colour = "black")</pre>
```


Digging into Data (UMD)

Histograms

```
h <- ggplot(faithful, aes(x = waiting))
h + geom_histogram(binwidth = 8, fill = "steelblue",
colour = "black")
```


Digging into Data (UMD)

February 11, 2013 34 / 53

Line Plot

```
climate <- read.csv("climate.csv", header = T)
ggplot(climate, aes(Year, Anomaly10y)) +
geom_line()</pre>
```


35 / 53

3

Line Plot: Confidence Regions

```
ggplot(climate, aes(Year, Anomaly10y)) +
geom_ribbon(aes(ymin = Anomaly10y - Unc10y,
ymax = Anomaly10y + Unc10y),
fill = "blue", alpha = .1) +
geom_line(color = "steelblue")
```


Bar Plots

```
ggplot(iris, aes(Species, Sepal.Length)) +
geom_bar(stat = "identity")
```


Digging into Data (UMD)

Properties of Data

February 11, 2013 37 / 53

э

Density vs. Line Plots

```
ggplot(faithful, aes(waiting)) +
geom_density(fill = "blue", alpha = 0.1)
```



```
ggplot(faithful, aes(waiting)) +
geom_line(stat = "density")
```


Digging into Data (UMD)

February 11, 2013 39 / 53

3

- 本間を 本語を 本語を

- Raster graphics (bmp, jpeg, png) don't scale well
- Preparing graphics for publication requires vector graphics (pdf, eps)
- Much easier to provide publication-quality images with ggplot2

Image: A matrix and a matrix

Saving Plots

• If the plot is on your screen

```
ggsave("~/path/to/figure/filename.png")
```

• If your plot is assigned to an object

ggsave(plot1, file = "~/path/to/figure/filename.png")

Specify a size

```
ggsave(file = "/path/to/figure/filename.png", width = 6,
height =4)
```

or any format (pdf, png, eps, svg, jpg)

```
ggsave(file = "/path/to/figure/filename.eps")
ggsave(file = "/path/to/figure/filename.jpg")
ggsave(file = "/path/to/figure/filename.pdf")
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Outline

Data Terminology

- 2 Testbed: Capital Bikeshare
- 3 Visualizing and Summarizing Data in Rattle

4 ggplot2

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Get an outline of DC

Draw it

```
p <- ggplot(stations)
p <- p + geom_polygon( data=states, aes(x=long, y=lat))</pre>
```

ggplot2 maps

Digging into Data (UMD)

Properties of Data

February 11, 2013 44 / 53

ggplot2 maps

Digging into Data (UMD)

Properties of Data

February 11, 2013 45 / 53

- 31

- 4 同 6 4 日 6 4 日 6

ggplot2 facets

p <- p + facet_grid(type ~ time)</pre>

Digging into Data (UMD)

Properties of Data

3

<ロ> (日) (日) (日) (日) (日)

ggplot2 facets (resorted)

Digging into Data (UMD)

Properties of Data

February 11, 2013 47 / 53

(日) (同) (三) (三)

ggplot2 scatterplots

p <- ggplot(rides)</pre>

- p <- p + geom_smooth(aes(x=startHour, y=distance))</pre>
- p <- p + coord_cartesian(ylim=c(1000,2500))</pre>

3

ggplot2 histograms

```
p <- ggplot(rides)
p <- p + geom_histogram(aes(x=duration), binwidth = .1)
p <- p + scale_y_sqrt()
p <- p + facet_grid(subscription ~ .)
p <- p + scale_x_continuous(limits=c(0, 4))</pre>
```


Digging into Data (UMD)

Properties of Data

February 11, 2013 49 / 53

Outline

Data Terminology

- 2 Testbed: Capital Bikeshare
- 3 Visualizing and Summarizing Data in Rattle
 - 4 ggplot2
 - 5 ggplot2 with "real" data

3

・ロン ・四 ・ ・ ヨン ・ ヨン

- You don't have to be able to do everything we did today
- You have to be able to do some of it
- Play around with the way of manipulating data you feel most comfortable with

- ∢ ศ⊒ ▶

Further help

- You've just scratched the surface with ggplot2.
- Practice
- Read the docs (either locally in R or at http://docs.ggplot2. org/current/)
- Work together

R Graphics Cookbook	
O'REILLY"	Winston Chang
Congregations by	Use R!
Hadley Wickham	
ggplot2	

Elegant Graphics for Data Analysis

3

< E

- Find some data
- Edit it so it is in a usable form
- Find interesting relationships in your data
- Use Rattle/ggplot2 to display those relationships (be creative and thorough!)

3