Data, Models, and First Steps

Digging into Data: Jordan Boyd-Graber

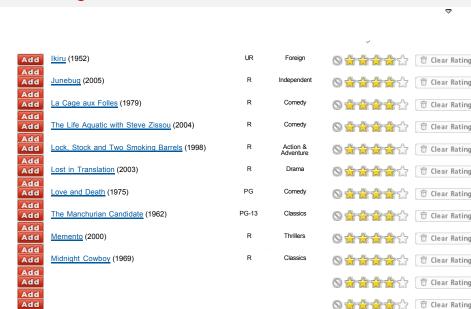
University of Maryland

January 27, 2014

COLLEGE OF INFORMATION STUDIES

Slides adapted from Dave Blei and Lauren Hannah

Roadmap


- The goals and ideas of the course
- Administrivia
- Getting started with Rattle and R

Outline

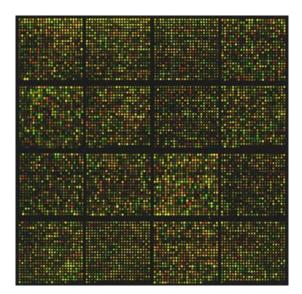
- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- 5 Finding and using data
- 6 Showing off Rattle
- Wrapup

Data are everywhere.

User ratings

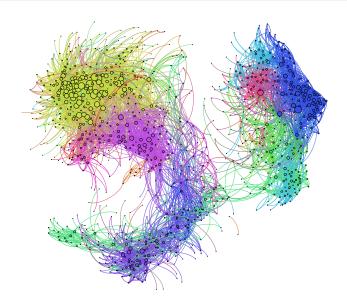
Add

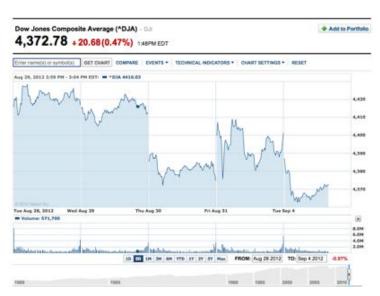
Purchase histories


SHOP FROM THIS ORDER

	Cheese			
0.5/0.51 lb	Cabot Vermont Cheddar	0.51 lb	\$7.99/lb	\$4.07
	Dairy			
1/1	Friendship Lowfat Cottage Cheese (16oz)		\$2.89/ea	\$2.89
1/1	Nature's Yoke Grade A Jumbo Brown Eggs (1 dozen)		\$1.49/ea	\$1.49
1/1	Santa Barbara Hot Salsa, Fresh (160z)		\$2.69/ea	\$2.69
1/1	Stonyfield Farm Organic Lowfat Plain Yogurt (32oz)		\$3.59/ea	\$3.59
	Fruit			
3/3	Anjou Pears (Farm Fresh, Med)	1.76 lb	\$2.49/lb	\$4.38
2/2	Cantaloupe (Farm Fresh, Med)		\$2.00/ea	\$4.00 S
	Grocery			
1/1	Fantastic World Foods Organic Whole Wheat Couscous (12oz)		\$1.99/ea	\$1.99
1/1	Garden of Eatin' Blue Corn Chips (90z)		\$2.49/ea	\$2.49
1/1	Goya Low Sodium Chickpeas (15.5oz)		\$0.89/ea	\$0.89
2/2	Marcal 2-Ply Paper Towels, 90ct (1ea)		\$1.09/ea	\$2.18 T
1/1	Muir Glen Organic Tomato Paste (6oz)		\$0.99/ea	\$0.99
1/1	Starkist Solid White Albacore Tuna in Spring Water		\$1.89/ea	\$1.89

Document collections


Genomics

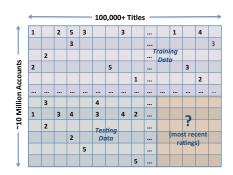

Neuroscience

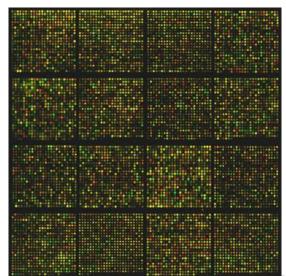
Social networks

Finance

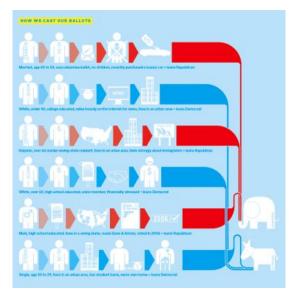
Data can help us solve problems.

Will NetFlix user 493234 like Transformers?


Will NetFlix user 493234 like Transformers?


How do you know?

Group many images and determine the number of groups


Which genes are associated with a disease? How can expression values be used to predict survival?

Is it likely that this stock was traded based on illegal insider information?

Who will vote and for whom?

Is this spam?

Subject: CHARITY.

Date: February 4, 2008 10:22:25 AM EST

To: undisclosed-recipients:; Reply-To: s.polla@yahoo.fr

Dear Beloved,

My name is Mrs. Susan Polla, from ITALY. If you are a christian and interested in charity please reply me at : (s.polla@yahoo.fr) for insight. Respectfully,

Mrs Susan Polla.

How about this one?

From: [snipped]

Subject: Superbowl?

Date: January 28, 2013 8:09:00 PM EST

To: jbg@umiacs.umd.edu, [snipped]

Anyone interested in coming by to watch the game? Beer and pizza, I'd

imagine. Should be an exciting game!

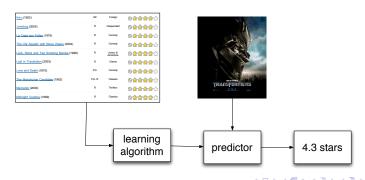
Where are the faces?

Data contain patterns that can help us solve problems.

This Course (Digging into Data)

We will study algorithms that find and exploit patterns in data.

- These algorithms draw on ideas from statistics and machine learning.
- Applications include
 - natural science (e.g., genomics, neuroscience)
 - web technology (e.g., Google, NetFlix)
 - finance (e.g., stock prediction)
 - policy (e.g., predicting what intervention X will do)
 - and many others


This Course (Digging into Data)

We will study algorithms that find and exploit patterns in data.

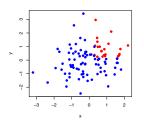
- Goal: fluency in thinking about modern data analysis problems.
- We will learn about a suite of tools in modern data analysis.
 - When to use them
 - The assumptions they make about data
 - Their capabilities, and their limitations
- We will learn a language and process for of solving data analysis problems. On completing the course, you will be able to learn about a new tool, apply it data, and understand the meaning of the result.

Basic idea behind everything we will study

- Collect or happen upon data.
- Analyze it to find patterns.
- Use those patterns to do something.

Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- Introducing R and Rattle
- 5 Finding and using data
- Showing off Rattle
- Wrapup

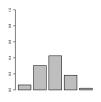

How the ideas are organized

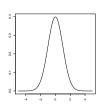
Of course, there is no one way to organize such a broad subject.

These concepts will recur through the course:

- Probabilistic foundations
- Supervised learning (more of this)
- Unsupervised learning (less of this)
- Methods that operate on discrete data (more of this)
- Methods that operate on continuous data (less of this)
- Representing data / feature engineering
- Evaluating models
- Understanding the assumptions behind the methods

Supervised vs. unsupervised methods


- Supervised methods find patterns in fully observed data and then try to predict something from partially observed data.
- For example, we might observe a collection of emails that are categorized into *spam* and *not spam*.
- After learning something about them, we want to take new email and automatically categorize it.


Supervised vs. unsupervised methods

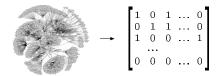
- Unsupervised methods find hidden structure in data, structure that we can never formally observe.
- E.g., a museum has images of their collection that they want grouped by similarity into 15 groups.
- Unsupervised learning is more difficult to evaluate than supervised learning. But, these kinds of methods are widely used.

Discrete vs. continuous methods

- Discrete methods manipulate a finite set of objects
 - e.g., classification into one of 5 categories.
- Continuous methods manipulate continuous values
 - e.g., prediction of the change of a stock price.

One useful grouping

	discrete	continuous
supervised	classification	regression
unsupervised	clustering	dimensionality reduction


One useful grouping

		discrete	continuous					
supervised		classification	regression					
			dimensionality reduction					
Disclaimer: most of my research falls under the "discrete" column								
(language), combining supervised and unsupervised methods								

Data representation

Republican nominee George Bush said he felt nervous as he voted today in his adopted home state of Texas, where he ended...

Understanding assumptions

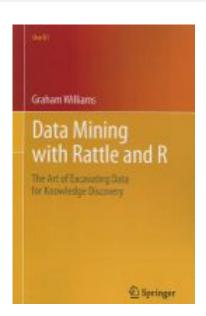
- The methods we'll study make assumptions about the data on which they are applied. E.g.,
 - Documents can be analyzed as a sequence of words;
 - or, as a "bag" of words.
 - Independent of each other;
 - or, as connected to each other
- What are the assumptions behind the methods?
- When/why are they appropriate?
- Much of this is an art

Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- Finding and using data
- 6 Showing off Rattle
- Wrapup

What you need for this course

- You need to use R and Rattle
- Helps to have a laptop to bring to class
- Math background
 - Not a machine learning course
 - Won't ask you to: prove anything, do integrals
 - ► You do need to be comfortable with some notation (sums, variables)
 - Will ask you to: add, divide, count, take logs
- Computer / programming skills
 - Don't need to know how to program (might help)
 - ▶ But you do need to be comfortable with assigning objects to variables
 - Need to be comfortable with the concept of functions (variables, return, etc.)
 - We'll use the command line (but you don't need to be a ninja)


Flipped Classroom

- Last year: not enough hands-on practice
- My responsibility: record lectures before class
- In class: you help each other, and we work through examples
- Your responsibility: come to class with questions from lecture (I'll randomly call on you—part of participation)

Administrivia

- Keep track of course webpage
- Three homeworks: 5 late days
- Midterm
- Project
- Let me know about special needs

Course reading

- We will provide reading materials, mostly from the book.
- Slightly different focus: same concepts, use book as starting point

Communicating with Piazza

We will use Piazza to manage all communication

https://piazza.com/umd/spring2014/inst737/home

- Questions answered within 1 day (hopefully sooner)
- Hosts discussions among yourselves
- Use for any kind of technical question
- Use for most administrative questions
- Can use to send us private questions too
- Will be a factor in participation

How to ask for help

- Explain what you're trying to do
- Give a minimal example
 - Someone else should be able to replicate the problem easily
 - Shouldn't require any data / information that only you have
- Explain what you think should happen
- Explain what you get instead (copy / paste or screenshot if you can)
- Explain what else you've tried

Me

- Fourth year assistant professor
 - iSchool and UMIACS
 - Offices: 2118C Hornbake / 3126 AV Williams
- Second time teaching the class
- Born in Colorado (where all my family live)
- Grew up in Iowa (hometown: Keokuk, Iowa)
- Went to high school in Arkansas
- Undergrad in California
- Grad school in New Jersey
- Brief jobs in between:
 - Working on electronic dictionary in Berlin
 - Worked on Google Books in New York
- ying / jbg / jordan / boyd-graber

Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- Finding and using data
- 6 Showing off Rattle
- Wrapup

Why R?

- It's Free
- Standard for statistical data science
- Used by major corporations (Facebook and Google)
- You can go very deep (if you need to)

Why Rattle?

- It's easy
- Introduces the power of R through a GUI
- Does 90% of what most users need
- Slowly eases you in to the other 10%

Installing R

Download Installation File

http://watson.nci.nih.gov/cran_mirror/

- Particularly for OS X, download version 2-14.2
- Otherwise, you will get errors

Installing Rattle

- Start R
- You'll see a command line

- This tells it too look for the package "rattle" and install it
- It will ask you to choose a mirror to download the file from; choose an MD one (it's in Bethesda)

Running Rattle for the First Time

```
R Console

> library(rattle)

Rattle: A free graphical interface for data mining with R.

Version 2.6.18 Copyright (c) 2006-2011 Togaware Pty Ltd.

Type 'rattle()' to shake, rattle, and roll your data.

> rattle()
```

- It will ask you to install a bunch of things
- Just say "yes"
- If you have problems, try exiting R and trying again

http://rattle.togaware.com/rattle-install-troubleshooting.html

Homework 0 (not for credit)

Install R and Rattle to try it out!

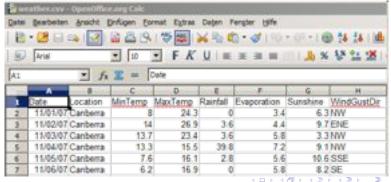
Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- Finding and using data
- 6 Showing off Rattle
- Wrapup

Where to get data?

- data.gov Obama initiative to get all government data in one place
- gapminder.org/data/ Global development data
- infochimps.org Pointers to interesting data
- http://bitly.com/bundles/hmason/1 A set of links to data
- http://www.ncbi.nlm.nih.gov/ National Center for Biotechnology Information
- http://www.ldc.upenn.edu/ Linguistic Data Consortium
- Wild, Wild, Web
- Devices
- Research

Where to get data?


- data.gov Obama initiative to get all government data in one place
- gapminder.org/data/ Global development data
- infochimps.org Pointers to interesting data
- http://bitly.com/bundles/hmason/1 A set of links to data
- http://www.ncbi.nlm.nih.gov/ National Center for Biotechnology Information
- http://www.ldc.upenn.edu/ Linguistic Data Consortium
- Wild, Wild, Web
- Devices
- Research
- First Homework: Find some data and describe it

Let's get some data

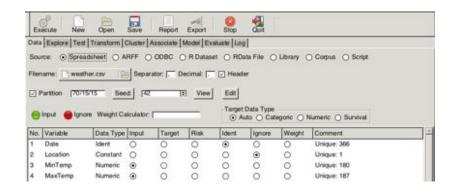
- Download data from a weather station http://goo.gl/X6EpS
- Open it in a text application

```
"Nate", "Location", "MinTemp", "MastTemp", "Rainfall", "Evaporation", "Sunshine", "WindGustDir", "WindGustSpeed", "WindDir9am", "WinGustDir", "WindGustSpeed", "WindDir9am", "WinGustDir", "WindGustDir", "WindGustSpeed", "WindDir9am", "WinGustDir", "WindGustDir", "WindGustDir",
```

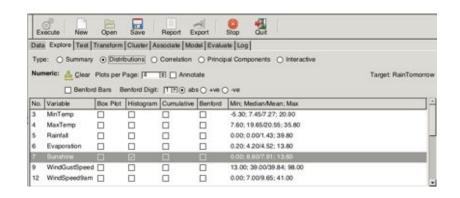
Open it up in Excel or your favorite Spreadsheet

Digression: Comma Separated Value Files

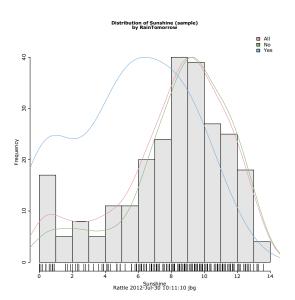
- Carryover from punchcards (easier to type)
- Each data item is separated by comma (or another character)
- Just about everything can use it (lowest common denominator)
 - ► Libraries in programming languages (starting with Fortran)
 - Spreadsheet
 - Exports from applications / devices

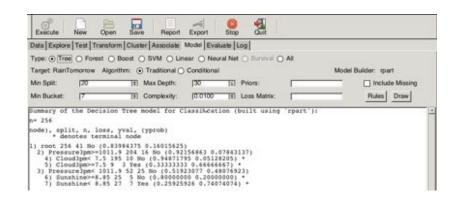

Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- 5 Finding and using data
- Showing off Rattle
- Wrapup

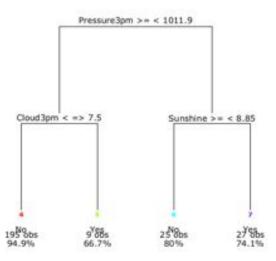

Play with the weather data

- We'll only be showing off "coolness"
- Explanations later
- Goal: Get a sense of the data
- Goal: Predict when it will rain


Play with the weather data


Finding connections . . .

Finding connections . . .



Making predictions . . .

Making predictions . . .

Decision Tree weather.csv \$ RainTomorrow

Outline

- What can we do with data?
- 2 How this course is organized
- 3 Administrivia and Introductions
- 4 Introducing R and Rattle
- 5 Finding and using data
- 6 Showing off Rattle
- Wrapup

A statistician's manifesto

(From T. Hastie, via J. McAuliffe)

- Understand the ideas behind the statistical methods, so you know how to use them, when to use them, when not to use them.
- Complicated methods build on simple methods. Understand simple methods first.
- The results of a method are of little use without an assessment of how well or poorly it is doing.

Next time . . .

- What are probability distributions
- How to compute probabilities
- Properties of distributions