5 Department of Computer Science
 UNIVERSITY OF COLORADO BOULDER

SVM

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SLIDES ADAPTED FROM HINRICH SCHÜTZE

Find the maximum margin hyperplane

Find the maximum margin hyperplane

Which are the support vectors?

Walkthrough example: building an SVM over the data shown

Working geometrically:

Walkthrough example: building an SVM over the data shown

Working geometrically:

- If you got $0=.5 x+y-2.75$, close!

Walkthrough example: building an SVM over the data shown

Working geometrically:

- If you got $0=.5 x+y-2.75$, close!
- Set up system of equations

$$
\begin{align*}
w_{1}+w_{2}+b & =-1 \tag{1}\\
\frac{3}{2} w_{1}+2 w_{2}+b & =0 \\
2 w_{1}+3 w_{2}+b & =+1 \tag{2}
\end{align*}
$$

Walkthrough example: building an SVM over the data shown

Working geometrically:

- If you got $0=.5 x+y-2.75$, close!
- Set up system of equations

$$
\begin{align*}
w_{1}+w_{2}+b & =-1 \tag{1}\\
\frac{3}{2} w_{1}+2 w_{2}+b & =0 \\
2 w_{1}+3 w_{2}+b & =+1 \tag{2}
\end{align*}
$$

The SVM decision boundary is:

$$
0=\frac{2}{5} x+\frac{4}{5} y-\frac{11}{5}
$$

Cannonical Form

Cannonical Form

Cannonical Form

$$
\begin{aligned}
& .4 x_{1}+.8 x_{2}-2.2 \\
& \bullet .4 \cdot 1+.8 \cdot 1-2.2=-1 \\
& \bullet .4 \cdot \frac{3}{2}+.8 \cdot 2=0 \\
& \bullet .4 \cdot 2+.8 \cdot 3-2.2=+1
\end{aligned}
$$

What's the margin?

- Distance to closest point

What's the margin?

- Distance to closest point

$$
\begin{equation*}
\sqrt{\left(\frac{3}{2}-1\right)^{2}+(2-1)^{2}}=\frac{\sqrt{5}}{2} \tag{4}
\end{equation*}
$$

What's the margin?

- Distance to closest point

$$
\begin{equation*}
\sqrt{\left(\frac{3}{2}-1\right)^{2}+(2-1)^{2}}=\frac{\sqrt{5}}{2} \tag{4}
\end{equation*}
$$

- Weight vector

What's the margin?

- Distance to closest point

$$
\begin{equation*}
\sqrt{\left(\frac{3}{2}-1\right)^{2}+(2-1)^{2}}=\frac{\sqrt{5}}{2} \tag{4}
\end{equation*}
$$

- Weight vector

$$
\begin{equation*}
\frac{1}{\|w\|}=\frac{1}{\sqrt{\left(\frac{2}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}}}=\frac{1}{\sqrt{\frac{20}{25}}}=\frac{5}{\sqrt{5} \sqrt{4}}=\frac{\sqrt{5}}{2} \tag{5}
\end{equation*}
$$

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right] ; b=-\frac{1}{4}
$$

Slack Example

Decision function:
$w=\left[\begin{array}{c}-\frac{1}{4} \\ \frac{1}{4}\end{array}\right] ; b=-\frac{1}{4}$

- What are the support vectors?

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right] ; b=-\frac{1}{4}
$$

- What are the support vectors?
- Which have non-zero slack?

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right] ; b=-\frac{1}{4}
$$

- What are the support vectors?
- Which have non-zero slack?
- Compute ξ_{B}, ξ_{E}

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Point B

$$
\begin{align*}
y_{B}\left(\vec{w}_{B} \cdot x_{B}+b\right) & = \tag{7}\\
-1(-0.25 \cdot-5+0.25 \cdot 1-0.25) & =-1.25 \tag{8}
\end{align*}
$$

Thus, $\xi_{B}=2.25$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{6}
\end{equation*}
$$

Point B

$$
\begin{align*}
y_{B}\left(\vec{w}_{B} \cdot x_{B}+b\right) & = \tag{7}\\
-1(-0.25 \cdot-5+0.25 \cdot 1-0.25) & =-1.25 \tag{8}
\end{align*}
$$

Thus, $\xi_{B}=2.25$

Point E

$$
\begin{align*}
y_{E}\left(\vec{w}_{E} \cdot x_{E}+b\right) & = \tag{9}\\
1(-0.25 \cdot 6+0.25 \cdot 3+-0.25) & =-1 \tag{10}
\end{align*}
$$

Thus, $\xi_{E}=2$

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
0 \\
2
\end{array}\right] ; b=-5
$$

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
0 \\
2
\end{array}\right] ; b=-5
$$

- What are the support vectors?

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
0 \\
2
\end{array}\right] ; b=-5
$$

- What are the support vectors?
- Which have non-zero slack?

Slack Example

Decision function:

$$
w=\left[\begin{array}{c}
0 \\
2
\end{array}\right] ; b=-5
$$

- What are the support vectors?
- Which have non-zero slack?
- Compute ξ_{A}, ξ_{C}

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{11}
\end{equation*}
$$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{11}
\end{equation*}
$$

Point A

$$
\begin{align*}
y_{A}\left(\vec{w}_{A} \cdot x_{A}+b\right) & = \tag{12}\\
1(0 \cdot-5+2 \cdot 0+-5) & =-5 \tag{13}
\end{align*}
$$

Thus, $\xi_{A}=6$

Computing slack

$$
\begin{equation*}
y_{i}\left(\vec{w}_{i} \cdot x_{i}+b\right) \geq 1-\xi_{i} \tag{11}
\end{equation*}
$$

Point A

$$
\begin{align*}
y_{A}\left(\vec{w}_{A} \cdot x_{A}+b\right) & = \tag{12}\\
1(0 \cdot-5+2 \cdot 0+-5) & =-5 \tag{13}
\end{align*}
$$

Thus, $\xi_{A}=6$

Point C

$$
\begin{align*}
y_{C}\left(\vec{w}_{C} \cdot x_{C}+b\right) & = \tag{14}\\
1(0 \cdot-5+2 \cdot 2+-5) & =-1 \tag{15}
\end{align*}
$$

Thus, $\xi_{C}=2$

Which one is better?

- Which decision boundary (wide / narrow) has the better objective?

Which one is better?

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i} \tag{16}
\end{equation*}
$$

Which one is better?

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i} \tag{18}
\end{equation*}
$$

Which one is better?

$$
\begin{align*}
\frac{1}{2}\|w\|^{2} & =0.0625 \tag{16}\\
\sum_{i} \xi_{i} & =4.25 \tag{17}
\end{align*}
$$

$$
\begin{align*}
\frac{1}{2}\|w\|^{2} & =\frac{1}{2}\left(2^{2}\right)=2 \tag{18}\\
\sum_{i} \xi_{i} & =8 \tag{19}
\end{align*}
$$

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{20}
\end{equation*}
$$

Which one is better?

$$
\begin{align*}
\frac{1}{2}\|w\|^{2} & =0.0625 \tag{16}\\
\sum_{i} \xi_{i} & =4.25 \tag{17}
\end{align*}
$$

$$
\begin{align*}
\frac{1}{2}\|w\|^{2} & =2 \tag{18}\\
\sum_{i} \xi_{i} & =8 \tag{19}
\end{align*}
$$

- Which decision boundary (wide / narrow) has the better objective?

$$
\begin{equation*}
\min _{w} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i} \tag{20}
\end{equation*}
$$

- In this case it doesn't matter. Common C values: $1.0, \frac{1}{m}$

Importance of C

- Need to do cross-validation to select C
- Don't trust default values
- Look at values with high ξ; are they bad data?

Importance of C

- Need to do cross-validation to select C
- Don't trust default values
- Look at values with high ξ; are they bad data?
- Other courses: how to find w

QFR

I have always found that mercy bears richer fruits than strict justice.

- Tenure
- Research
- Service
- Grad Teaching/Advising
- Undergrad Teaching
- QFR are like my grades
- Numbers are insanely important

