

Supervised Learning

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul NOVEMBER 3, 2016

dimension	weight
b	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

1 $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 =$

2
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

1 $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$

2
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 =$$

3
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

1 $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$

2
$$\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$$

3
$$\mathbf{x}_3 = \{.5, 2\}; y_3 =$$

dimension	weight
b	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

- **1** $\mathbf{x}_1 = \{0.0, 0.0\}; y_1 = 1.0$
- **2** $\mathbf{x}_2 = \{1.0, 1.0\}; y_2 = 2.0$
- **3** $\mathbf{x}_3 = \{.5, 2\}; y_3 = 0.0$

dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) =$$

2 $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$
3 $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2 $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) =$
3 $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

2 $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$
3 $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) =$

dimension	weight
w ₀	1
<i>w</i> ₁	2.0
<i>W</i> ₂	-1.0
σ	1.0

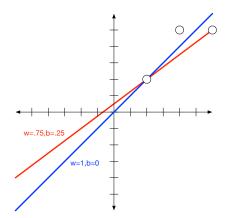
$$p(y|x) = y \sim N\left(b + \sum_{j=1}^{p} w_j x_j, \sigma^2\right)$$
$$p(y|x) = \frac{\exp\left\{-\frac{(y-\hat{y})^2}{2}\right\}}{\sqrt{2\pi}}$$

1
$$p(y_1 = 1 | \mathbf{x}_1 = \{0.0, 0.0\}) = 0.399$$

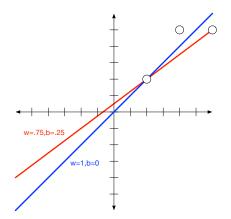
2 $p(y_2 = 3 | \mathbf{x}_2 = \{1.0, 1.0\}) = 0.242$
3 $p(y_3 = -1 | \mathbf{x}_3 = \{.5, 2\}) = 0.242$

Outline

Data: (1,1); (2,2.5); (3,2.5)

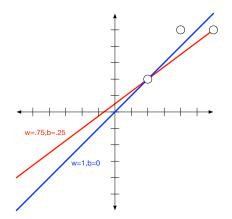


Data: (1,1); (2,2.5); (3,2.5)



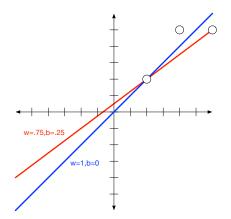
Which is the better OLS solution?

Data: (1,1); (2,2.5); (3,2.5)



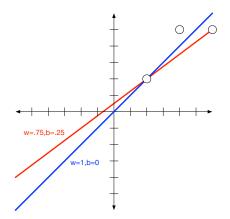
Blue! It has lower RSS.

Data: (1,1); (2,2.5); (3,2.5)



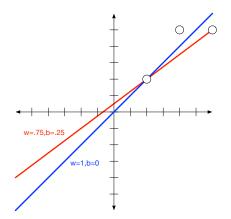
What is the RSS of the better solution?

Data: (1,1); (2,2.5); (3,2.5)



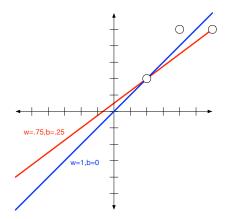
$$\frac{1}{2}\sum_{i}r_{i}^{2} = \frac{1}{2}\left((1-1)^{2} + (2.5-2)^{2} + (2.5-3)^{2}\right) = \frac{1}{4}$$

Data: (1,1); (2,2.5); (3,2.5)



What is the RSS of the red line?

Data: (1,1); (2,2.5); (3,2.5)



$$\frac{1}{2}\sum_{i}r_{i}^{2} = \frac{1}{2}\left((1-1)^{2} + (\frac{10}{4} - \frac{7}{4})^{2} + (2.5 - 2.5)^{2}\right) = \frac{9}{32}$$

Reminder: Logistic Regression

$$P(Y=0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(1)
$$P(Y=1|X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(2)

- Discriminative prediction: p(y|x)
- Classification uses: ad placement, spam detection
- What we didn't talk about is how to learn β from data

Logistic Regression: Objective Function

$$\mathcal{L} \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$

$$= \sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right) - \ln \left[1 + \exp\left(\beta_0 + \sum_{i} \beta_i x_i^{(j)}\right)\right]$$
(3)
(4)

Algorithm

- Initialize a vector B to be all zeros
- **2** For *t* = 1,...,*T*
 - For each example \vec{x}_i , y_i and feature *j*:
 - Compute $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
 - Set $\beta[j] = \beta[j]' + \eta(y_i \pi_i)x_i$
- ③ Output the parameters β_1, \ldots, β_d .

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$

$$\vec{\beta} = \langle \beta_{bias} = 0, \beta_A = 0, \beta_B = 0, \beta_C = 0, \beta_D = 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$)

You first see the positive example. First, compute π_1

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ $y_2 = 0$ A A A A B B B C
(Assume step size $\eta = 1.0.$)B C C C D D D D

You first see the positive example. First, compute π_1 $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} =$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ $y_2 = 0$ A A A A B B B C
(Assume step size $\eta = 1.0.$)B C C C D D D D

You first see the positive example. First, compute π_1 $\pi_1 = \Pr(y_1 = 1 | \vec{x_1}) = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} = \frac{\exp 0}{\exp 0 + 1} = 0.5$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

 $\pi_1 = 0.5$ What's the update for β_{bias} ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_{bias} ? $\beta_{bias} = \beta'_{bias} + \eta \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_{bias} ? $\beta_{bias} = \beta'_{bias} + \eta \cdot (y_1 - \pi_1) \cdot x_{1,bias} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_A ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$)

*y*₂ =**0** B C C C D D D D

What's the update for β_A ? $\beta_A = \beta'_A + \eta \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ $y_2 = 0$ A A A A B B B C
(Assume step size $\eta = 1.0.$)B C C C D D D D

What's the update for β_A ? $\beta_A = \beta'_A + \eta \cdot (y_1 - \pi_1) \cdot x_{1,A} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 4.0 = 2.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_B ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_B ? $\beta_B = \beta'_B + \eta \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ $y_2 = 0$ A A A A B B B C
(Assume step size $\eta = 1.0.$)B C C

*y*₂ =**0** B C C C D D D D

What's the update for β_B ? $\beta_B = \beta'_B + \eta \cdot (y_1 - \pi_1) \cdot x_{1,B} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 3.0 = 1.5$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_C ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) $y_2 = \mathbf{0}$ $\mathbf{B} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$

What's the update for β_C ? $\beta_C = \beta'_C + \eta \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) $y_2 = \mathbf{0}$ $\mathbf{B} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$

What's the update for β_C ? $\beta_C = \beta'_C + \eta \cdot (y_1 - \pi_1) \cdot x_{1,C} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 1.0 = 0.5$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_D ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_D ? $\beta_D = \beta'_D + \eta \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i) x_i$$
$$\vec{\beta} = \langle 0, 0, 0, 0, 0 \rangle$$

 $y_1 = 1$ $y_2 = 0$ A A A A B B B C
(Assume step size $\eta = 1.0.$)B C C

*y*₂ =**0** B C C C D D D D

What's the update for β_D ? $\beta_D = \beta'_D + \eta \cdot (y_1 - \pi_1) \cdot x_{1,D} = 0.0 + 1.0 \cdot (1.0 - 0.5) \cdot 0.0 = 0.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

Now you see the negative example. What's π_2 ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) $y_2 = 0$ B C C C D D D D

Now you see the negative example. What's π_2 ? $\pi_2 = \Pr(y_2 = 1 | \vec{x}_2) = \frac{\exp\beta^T x_i}{1 + \exp\beta^T x_i} = \frac{\exp\{.5 + 1.5 + 1.5 + 0\}}{\exp\{.5 + 1.5 + 1.5 + 0\} + 1} =$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) $y_2 = 0$ B C C C D D D D

Now you see the negative example. What's π_2 ? $\pi_2 = \Pr(y_2 = 1 | \vec{x}_2) = \frac{\exp\beta^T x_i}{1 + \exp\beta^T x_i} = \frac{\exp\{.5 + 1.5 + 1.5 + 0\}}{\exp\{.5 + 1.5 + 1.5 + 0\} + 1} = 0.97$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

*y*₁ =**1**

A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

Now you see the negative example. What's π_2 ? $\pi_2 = 0.97$ What's the update for β_{bias} ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_{bias} ? $\beta_{bias} = \beta'_{bias} + \eta \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0$.) *y*₂ =**0** B C C C D D D D

What's the update for β_{bias} ? $\beta_{bias} = \beta'_{bias} + \eta \cdot (y_2 - \pi_2) \cdot x_{2,bias} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = -0.47$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 =$ 1 A A A A B B B C (Assume step size $\eta =$ 1.0.) *y*₂ =**0** B C C C D D D D

What's the update for β_A ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_A ? $\beta_A = \beta'_A + \eta \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ **=0** B C C C D D D D

What's the update for β_A ? $\beta_A = \beta'_A + \eta \cdot (y_2 - \pi_2) \cdot x_{2,A} = 2.0 + 1.0 \cdot (0.0 - 0.97) \cdot 0.0 = 2.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 =$ 1 A A A A B B B C (Assume step size $\eta =$ 1.0.) *y*₂ =**0** B C C C D D D D

What's the update for β_B ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ **=0** B C C C D D D D

What's the update for β_B ? $\beta_B = \beta'_B + \eta \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_B ? $\beta_B = \beta'_B + \eta \cdot (y_2 - \pi_2) \cdot x_{2,B} = 1.5 + 1.0 \cdot (0.0 - 0.97) \cdot 1.0 = 0.53$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 =$ 1 A A A A B B B C (Assume step size $\eta =$ 1.0.) *y*₂ =**0** B C C C D D D D

What's the update for β_C ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_C ? $\beta_C = \beta'_C + \eta \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_C ? $\beta_C = \beta'_C + \eta \cdot (y_2 - \pi_2) \cdot x_{2,C} = 0.5 + 1.0 \cdot (0.0 - 0.97) \cdot 3.0 = -2.41$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 =$ 1 A A A A B B B C (Assume step size $\eta =$ 1.0.) *y*₂ =**0** B C C C D D D D

What's the update for β_D ?

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_D ? $\beta_D = \beta'_D + \eta \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0$

$$\beta[j] = \beta[j] + \eta(y_i - \pi_i)x_i$$
$$\vec{\beta} = \langle .5, 2, 1.5, 0.5, 0 \rangle$$

 $y_1 = 1$ A A A A B B B C (Assume step size $\eta = 1.0.$) *y*₂ =**0** B C C C D D D D

What's the update for β_D ? $\beta_D = \beta'_D + \eta \cdot (y_2 - \pi_2) \cdot x_{2,D} = 0.0 + 1.0 \cdot (0.0 - 0.97) \cdot 4.0 = -3.88$

Recap

- Linear Regression
- Logistic Regression
- HW5: Implement SGD for logistic regression