

Hypothesis Testing

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul OCTOBER 11, 2016

Observ	ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84
Expect	ed		
	Favor	Indifferent	Oppose
Dem			
Rep			

Observ	ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84
Expect	ed		
	Favor	Indifferent	Oppose
Dem	115.14		
Rep			

Observ	ed		
	Favor	Indifferent	Oppose
Dem	138	83	64
Rep	64	67	84
Expect	ed		
	Favor	Indifferent	Oppose
Dem	115.14	85.50	
Rep			

Observ	ed			
	Favor	Indifferent	Oppose	
Dem	138	83	64	
Rep	64	67	84	
Expected				
	Favor	Indifferent	Oppose	
Dem	115.14	85.50	84.36	
Rep				

ed				
Favor	Indifferent	Oppose		
138	83	64		
64	67	84		
Expected				
Favor	Indifferent	Oppose		
115.14	85.50	84.36		
86.86				
	ed Favor 138 64 ed Favor 115.14 86.86	ed Favor Indifferent 138 83 64 67 ed Favor Indifferent 115.14 85.50 86.86		

Observ	ed			
	Favor	Indifferent	Oppose	
Dem	138	83	64	
Rep	64	67	84	
Expected				
	Favor	Indifferent	Oppose	
Dem	115.14	85.50	84.36	
Rep	86.86	64.50		

Observ	ved			
	Favor	Indifferent	Oppose	
Dem	138	83	64	
Rep	64	67	84	
Expected				
	Favor	Indifferent	Oppose	
Dem	115.14	85.50	84.36	
Rep	86.86	64.50	63.64	

Observed				
Favor	Indifferent	Oppose		
138	83	64		
64	67	84		
Expected				
Favor	Indifferent	Oppose		
115.14	85.50	84.36		
~~ ~~	04 50	00.04		
	ed Favor 138 64 ed Favor 115.14	ed Favor Indifferent 138 83 64 67 ed Favor Indifferent 115.14 85.50 20.00 24.50		

4.539 + 0.073 + 4.914 + 6.016 + 0.097 + 6.514 = 22.152(1)

Running test: df, p-Value

Degrees of Freedom?

- Degrees of Freedom? $(r-1)(c-1) = 1 \cdot 2 = 2$
- p-value

- Degrees of Freedom? $(r-1)(c-1) = 1 \cdot 2 = 2$
- p-value

A herd of 1,500 steer was fed a special highâĂŘprotein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

We Need: What test? What distribution? What's the null?

• Test?

- Test? z-test
- Distribution?

- Test? z-test
- Distribution? Normal with mean 5, s.d. 7.1
- Null?

- Test? z-test
- Distribution? Normal with mean 5, s.d. 7.1
- Null? $H_0: \mu_0 = 5$
- α?

- Test? z-test
- Distribution? Normal with mean 5, s.d. 7.1
- Null? $H_0: \mu_0 = 5$
- α? Let's say 0.05

A herd of 1,500 steer was fed a special highâĂŘprotein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

Test Statistic:

A herd of 1,500 steer was fed a special highâĂŘprotein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

Test Statistic:
$$Z = \frac{6.7-5}{\frac{7.1}{\sqrt{29}}} = \frac{1.7}{1.318} = 1.289$$

>>> from scipy.stats import norm >>> 1.0 - norm.cdf(1.28) 0.10027256795444206

Read in Data

```
>>> import pandas as pd
>>> mpg = pd.read_csv("jp-us-mpg.dat", delim_whitespace=Tru
>>> mpg.head()
US Japan
0 18 24.0
1 15 27.0
2 18 27.0
3 16 25.0
4 17 31.0
```

Is the average car in the US as efficient as the average car in Japan?

Compute means

Compute means

>>> from numpy import mean
>>> mean(mpg["Japan"].dropna())
30.481012658227847
>>> mean(mpg["US"].dropna())
20.14457831325301

Compute sample variances

Compute means

>>> from numpy import mean
>>> mean(mpg["Japan"].dropna())
30.481012658227847
>>> mean(mpg["US"].dropna())
20.14457831325301

Compute sample variances

```
>>> from numpy import var
>>> us = mpg["US"].dropna()
>>> jp = mpg["Japan"].dropna()
>>> jp_var = var(jp) * len(jp) / float(len(jp) - 1)
>>> us_var = var(us) * len(us) / float(len(us) - 1)
```

$$\nu = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}}$$

Introduction to Data Science Algorithms | Boyd-Graber and Paul

(2)

$$\nu = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{\left(\frac{s_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{s_2^2}{N_2}\right)^2}{N_2 - 1}}$$

v = 136.8750

(2)

$$T = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

(3)

$$T = \frac{(\bar{x}_{1} - \bar{x}_{2})}{\sqrt{\frac{s_{1}^{2}}{N_{1}} + \frac{s_{2}^{2}}{N_{2}}}}$$

T = 12.94

(3)

p-value

>>> 2*(1.0 - t.cdf(abs(12.946), 136.8750)) 0.0