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Maximum Likelihood

• Going from data to parameters

• Deriving the things we just told you on faith

• Using in HW2
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Exponential Distribution

You observe x1,x2, . . .xN . What is the MLE for the parameter θ?

fθ (x) =λexp{−λx}1 [x > 0] (1)

(λ> 0)

`=N logλ−
∑

i

λxi (2)

0=
N

λ
−
∑

i

xi (3)

λ=
N

∑

i xi
(4)

(5)
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Uniform Distribution

You observe x1,x2, . . .xN from a distribution uniform in [0,θ ]. What is the
MLE for the parameter θ? Real problem: tanks from serial numbers.

Probability of observing N observations from uniform distribution

fθ (~x) =
∏

i

1

θ
=

1

θ

N

1 [0≤ xi ≤ θ ] (6)

`=

¨

−N logθ if θ >maxxi

−∞ otherwise
(7)

Maximum at θ =maxxi . (But biased down: needs to be adjusted up.)
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More complicated: Poisson

• We have the following data
Number Marriagies Age

0 12
0 50
2 30
2 36
6 92
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Assuming a model

Let’s assume that the number of marriages comes from a Poisson
distribution whose parameter is a function of age

λi =λ0agei (8)

• Likelihood

• Log-likelihood

• Gradient λ0

• MLE
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log
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exp
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=
∑
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log
�
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∑
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∑
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• Gradient λ0
• MLE

Introduction to Data Science Algorithms | Boyd-Graber and Paul Maximum Likelihood | 6 of 9



Assuming a model

Let’s assume that the number of marriages comes from a Poisson
distribution whose parameter is a function of age

λi =λ0agei (8)

• Likelihood

p(xi) =
exp{λ0age}(λ0age)xi

xi !
(9)

• Log-likelihood

`=−λ0

∑

i

agei +
∑

i

xi log(λ0agei)−
∑

i

logxi ! (10)

• Gradient λ0

• MLE

Introduction to Data Science Algorithms | Boyd-Graber and Paul Maximum Likelihood | 6 of 9



Age of Marriage

• Gradient λ0

• λ0 MLE
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• Gradient λ0

∂ `

∂ λ0
=−

∑

i

agei +
∑

i

xi
∂ logλ0agei

∂ λ0
(11)

=
∑

i

agei +
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i

xi
agei

λ0agei
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xi (13)
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Our dataset

Number Marriagies Age
0 12
0 50
2 30
2 36
6 92

• λ0?

• Expected number of marriages for
someone 22 years old? Most
likely number of marriages?
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Our dataset

Number Marriagies Age
0 12
0 50
2 30
2 36
6 92

• λ0: 0.044
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someone 22 years old? Most
likely number of marriages?
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Our dataset
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2 30
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Our dataset

Number Marriagies Age
0 12
0 50
2 30
2 36
6 92

• λ0: 0.044

• Expected number of marriages for
someone 22 years old? Most
likely number of marriages?

◦ Eλ0
[X ] = 1.0

◦ Two modes: 0, 1
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Now we’re getting somewhere!

• Data Science = Reverse of Probabilities

• Building models from data

• Making predictions, refining models
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Quiz

• Poisson distribution

f (x) =
exp{λ}(λ)x

x!
(15)

• Normal distribution

f (x) =
1

p
2πσ2

exp

�

−
(x −µ)2

2σ2

�
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