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Don’t Panic

� Freakout on Piazza on NY / WV (4 districts = .1 points / 40)

� HW2 released in next few days

� Office hours huge success
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Today

� Conditional probability problems
� Important for classification
� You’ll be estimating them in HW2
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Dice

A die is rolled twice

what is the probability that the sum of the faces is greater than 7, given that

� the first outcome was 4?

� the first outcome was greater than 4?

� the first outcome was a 1?

� the first outcome was less than 5?
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Dice

� p(X1 +X2 > 7 |X1 = 4) =

� p(X1 +X2 > 7 |X1 > 4) =

� p(X1 +X2 > 7 |X1 = 1) =

� p(X1 +X2 > 7 |X1 < 5) =
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� p(X1 +X2 > 7 |X1 = 4) = p(X1+X2>7∧X1=4)
p(X1=4) = 3/36

1/6 = 1
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1/3 = 27
36 =

3
4
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Children

What is the probability a family of two children has two boys

� given that it has at least one boy?

� given that the first child is a boy?
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Children

� P(X1 =>,X2 =>|X1 =>∨X2 =>) =
� P(X1 =>,X2 =>|X1 =>) =
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Conditional Probabilities

One coin in a collection of 65 has two heads. The rest are fair. If a coin,
chosen at random from the lot and then tossed, turns up heads 6 times in a
row, what is the probability that it is the two-headed coin?
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Conditional Probabilities

� Let C be the coin chose (> for fake)

� Let H be the number of heads out of six

P(C =>|H = 6) = (1)
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Conditional Probabilities

� Let C be the coin chose (> for fake)

� Let H be the number of heads out of six

P(C =>|H = 6) =
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=

1/65

1/65+ 64
65 ·

1
26

= (1)
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� Let C be the coin chose (> for fake)

� Let H be the number of heads out of six

P(C =>|H = 6) =
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1
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1

2
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Bayes Rule

There’s a test for Boogie Woogie Fever (BWF). The probability of geting a
positive test result given that you have BWF is 0.8, and the probability of
getting a positive result given that you do not have BWF is 0.01. The overall
incidence of BWF is 0.01.

1. What is the marginal probability of getting a positive test result?

2. What is the probability of having BWF given that you got a positive test
result?
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Bayes Rule

Let D be the disease, T be the test

� P(T =>) =
� P(D =>|T =>) =
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Bayes Rule
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