Why Language is Hard: Structure and Predictions

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul
SLIDES ADAPTED FROM LIANG HUANG

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

Viterbi Algorithm

- Given an unobserved sequence of length $L,\left\{x_{1}, \ldots, x_{L}\right\}$, we want to find a sequence $\left\{z_{1} \ldots z_{L}\right\}$ with the highest probability.
- It's impossible to compute K^{L} possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$
\begin{equation*}
\delta_{1}(k)=\pi_{k} \beta_{k, x_{i}} \tag{1}
\end{equation*}
$$

- Recursion:

$$
\begin{equation*}
\delta_{n}(k)=\max _{j}\left(\delta_{n-1}(j) \theta_{j, k}\right) \beta_{k, x_{n}} \tag{2}
\end{equation*}
$$

- The complexity of this is now $K^{2} L$.
- In class: example that shows why you need all $O(K L)$ table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$
\begin{equation*}
\Psi_{n}=\operatorname{argmax}_{j} \delta_{n-1}(j) \theta_{j, k} \tag{3}
\end{equation*}
$$

- The complexity of this is now $K^{2} L$.
- In class: example that shows why you need all $O(K L)$ table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$
\begin{equation*}
\Psi_{n}=\operatorname{argmax}_{j} \delta_{n-1}(j) \theta_{j, k} \tag{3}
\end{equation*}
$$

- Let's do that for the sentence "come and get it"

POS	π_{k}	$\beta_{k, x_{1}}$	$\log \delta_{1}(k)$
MOD	0.234	0.024	-5.18
DET	0.234	0.032	-4.89
CONJ	0.234	0.024	-5.18
N	0.021	0.016	-7.99
PREP	0.021	0.024	-7.59
PRO	0.021	0.016	-7.99
V	0.234	0.121	-3.56
come and get it			

Why logarithms?
(1) More interpretable than a float with lots of zeros.
(2) Underflow is less of an issue
(3) Addition is cheaper than multiplication

$$
\begin{equation*}
\log (a b)=\log (a)+\log (b) \tag{4}
\end{equation*}
$$

POS	$\log \delta_{1}(j)$		$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$\log \delta_{1}(j)$		$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
Come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
come and get it			

$$
\log \left(\delta_{0}(\mathrm{~V}) \theta_{\mathrm{V}, \mathrm{CONJ}}\right)=\log \delta_{0}(k)+\log \theta_{\mathrm{V}, \mathrm{CONJ}}=-3.56+-1.65
$$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$		
MOD	-5.18				
DET	-4.89		$? ? ?$		
CONJ	-5.18				
N	-7.99				
PREP	-7.59				
PRO	-7.99	-5.21			
V	-3.56	come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18		
DET	-4.89		$? ? ?$
CONJ	-5.18		
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	$? ? ?$
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$\log \delta_{1}(k)=-5.21-\log \beta_{\mathrm{CONJ}}$, and $=$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

$\log \delta_{1}(k)=-5.21-\log \beta_{\mathrm{CONJ}, \text { and }}=-5.21-0.64$

POS	$\log \delta_{1}(j)$	$\log \delta_{1}(j) \theta_{j, \mathrm{CONJ}}$	$\log \delta_{2}(\mathrm{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	
come and get it			

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	Come	and		get		it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X				
DET	-4.89	-0.00	X				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	X				
PREP	-7.59	-0.00	\times				
PRO	-7.99	-0.00	\times				
V	-3.56	-0.00	\times				
WORD	Come	and		get		it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X	-0.00	X		
DET	-4.89	-0.00	X	-0.00	X		
CONJ	-5.18	-6.02	V	-0.00	X		
N	-7.99	-0.00	X	-0.00	X		
PREP	-7.59	-0.00	X	-0.00	X		
PRO	-7.99	-0.00	X	-0.00	X		
V	-3.56	-0.00	X	-9.03	CONJ		
WORD	come	an				it	

POS	$\delta_{1}(k)$	$\delta_{2}(k)$	b_{2}	$\delta_{3}(k)$	b_{3}	$\delta_{4}(k)$	b_{4}
MOD	-5.18	-0.00	X	-0.00	X	-0.00	X
DET	-4.89	-0.00	X	-0.00	X	-0.00	X
CONJ	-5.18	-6.02	V	-0.00	X	-0.00	X
N	-7.99	-0.00	X	-0.00	X	-0.00	X
PREP	-7.59	-0.00	X	-0.00	X	-0.00	X
PRO	-7.99	-0.00	X	-0.00	X	-14.6	V
V	-3.56	-0.00	X	-9.03	CONJ	-0.00	X
WORD	come	and		get		it	

