

Why Language is Hard: Structure and Predictions

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM LIANG HUANG Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest probability.

- Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_n(k) = \max_j \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n} \tag{2}$$

- Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k,x_i} \tag{1}$$

$$\delta_n(k) = \max_j \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n} \tag{2}$$

- Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_n(k) = \max_j \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
(2)

- Given an unobserved sequence of length L, {x₁,..., x_L}, we want to find a sequence {z₁...z_L} with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to *t* that ends in state *k*.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_n(k) = \max_j \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
(2)

- The complexity of this is now K^2L .
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k} \tag{3}$$

- The complexity of this is now K^2L .
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k} \tag{3}$$

Let's do that for the sentence "come and get it"

POS	π_k	β_{k,x_1}	$\log \delta_1(k)$
MOD	0.234	0.024	-5.18
DET	0.234	0.032	-4.89
CONJ	0.234	0.024	-5.18
N	0.021	0.016	-7.99
PREP	0.021	0.024	-7.59
PRO	0.021	0.016	-7.99
V	0.234	0.121	-3.56

Why logarithms?

- More interpretable than a float with lots of zeros.
- O Underflow is less of an issue
- 3 Addition is cheaper than multiplication

$$log(ab) = log(a) + log(b)$$
(4)

POS	$\log \delta_1(j)$	$\log \delta_2(ext{CONJ})$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$\log \delta_1(j)$	$\log \delta_2(ext{CONJ})$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	???
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		
		and the second second in	

 $\log(\delta_0(V)\theta_{V, \text{ CONJ}}) = \log \delta_0(k) + \log \theta_{V, \text{ CONJ}} = -3.56 + -1.65$

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99	≤ -7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤ -7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤ -7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤ -7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

log
$${\delta}_1(k)$$
 $=$ $-$ 5.21 $-$ log ${eta}_{ ext{CONJ, and}}$ $=$

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤ -7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

log
$${\delta}_1(k) \!=\! -5.21 \!-\! \log {eta}_{
m CONJ, \ and} \!=\! -5.21 \!-\! 0.64$$

POS	$\log \delta_1(j)$	$\log \delta_1(j) \theta_{j,\text{CONJ}}$	$\log \delta_2(\text{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤ -7.99	
PREP	-7.59	≤ -7.59	
PRO	-7.99	≤ -7.99	
V	-3.56	-5.21	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	b ₄
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	b ₄
MOD	-5.18	-0.00	Х				
DET	-4.89	-0.00	Х				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	Х				
PREP	-7.59	-0.00	Х				
PRO	-7.99	-0.00	Х				
V	-3.56	-0.00	Х				
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	b_4
MOD	-5.18	-0.00	Х	-0.00	Х		
DET	-4.89	-0.00	Х	-0.00	Х		
CONJ	-5.18	-6.02	V	-0.00	Х		
N	-7.99	-0.00	Х	-0.00	Х		
PREP	-7.59	-0.00	Х	-0.00	Х		
PRO	-7.99	-0.00	Х	-0.00	Х		
V	-3.56	-0.00	Х	-9.03	CONJ		
WORD	come	and		get		it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	b ₄
MOD	-5.18	-0.00	Х	-0.00	Х	-0.00	Х
DET	-4.89	-0.00	Х	-0.00	Х	-0.00	Х
CONJ	-5.18	-6.02	V	-0.00	Х	-0.00	Х
N	-7.99	-0.00	Х	-0.00	Х	-0.00	Х
PREP	-7.59	-0.00	Х	-0.00	Х	-0.00	Х
PRO	-7.99	-0.00	Х	-0.00	Х	-14.6	V
V	-3.56	-0.00	Х	-9.03	CONJ	-0.00	Х
WORD	come	and		get		it	