

Why Language is Hard: Structure and Predictions

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM RAY MOONEY (NOT ON FINALI)

- Annotate each word in a sentence with a part-of-speech marker.
- Lowest level of syntactic analysis.

John	saw	the	saw	and	decided	to	take	it	to	the	table
NNP	VBD	DT	NN	CC	VBD	ТО	VB	PRP	IN	DT	NN

Tag Examples

- Noun (person, place or thing)
 - Singular (NN): dog, fork
 - Plural (NNS): dogs, forks
 - Proper (NNP, NNPS): John, Springfields
- Personal pronoun (PRP): I, you, he, she, it
- Wh-pronoun (WP): who, what
- Verb (actions and processes)
 - Base, infinitive (VB): eat
 - · Past tense (VBD): ate
 - · Gerund (VBG): eating
 - Past participle (VBN): eaten
 - Non 3rd person singular present tense (VBP): eat
 - 3rd person singular present tense: (VBZ): eats
 - Modal (MD): should, can
 - To (TO): to (to eat)

"Like" can be a verb or a preposition

- I like/VBP candy.
- Time flies like/IN an arrow.

"Around" can be a preposition, particle, or adverb

- I bought it at the shop around/IN the corner.
- I never got around/RP to getting a car.
- A new Prius costs around/RB \$25K.

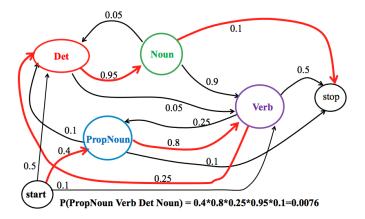
- Usually assume a separate initial tokenization process that separates and/or disambiguates punctuation, including detecting sentence boundaries.
- Degree of ambiguity in English (based on Brown corpus)
 - 11.5% of word types are ambiguous.
 - 40% of word tokens are ambiguous.
- Average POS tagging disagreement amongst expert human judges for the Penn treebank was 3.5%
- Based on correcting the output of an initial automated tagger, which was deemed to be more accurate than tagging from scratch.
- Baseline: Picking the most frequent tag for each specific word type gives about 90% accuracy 93.7% if use model for unknown words for Penn Treebank tagset.

- Just predict the most frequent class: 0.38 accuracy
- Can get to around 60% accuracy by adding in dictionaries, prefix / suffix features

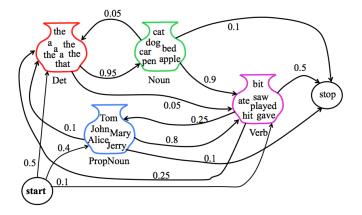
- Just predict the most frequent class: 0.38 accuracy
- Can get to around 60% accuracy by adding in dictionaries, prefix / suffix features
- Can get to 95% accuracy if you take correlated predictions into account

- If you have a noun, it's more likely to be preceeded by an adjective
- Determiners are followed by either a noun or an adjective
- Determiners don't follow each other

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.


- π A distribution over start states (vector of length K): $\pi_i = p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{j,w} = p(x_n = w | z_n = j)$

Assume *K* parts of speech, a lexicon size of *V*, a series of observations $\{x_1, \ldots, x_N\}$, and a series of unobserved states $\{z_1, \ldots, z_N\}$.


- π A distribution over start states (vector of length K): $\pi_i = p(z_1 = i)$
- θ Transition matrix (matrix of size K by K): $\theta_{i,j} = p(z_n = j | z_{n-1} = i)$
- β An emission matrix (matrix of size K by V): $\beta_{j,w} = p(x_n = w | z_n = j)$

Two problems: How do we move from data to a model? (Estimation) How do we move from a model and unlabled data to labeled data? (Inference)

Cartoon

Cartoon

 For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{1}$$

• α_i is called a smoothing factor, a pseudocount, etc.

 For a multinomial distribution (i.e. a discrete distribution, like over words):

$$\theta_i = \frac{n_i + \alpha_i}{\sum_k n_k + \alpha_k} \tag{1}$$

- α_i is called a smoothing factor, a pseudocount, etc.
- When α_i = 1 for all *i*, it's called "Laplace smoothing" and corresponds to a uniform prior over all multinomial distributions.

		here MOD	come V	old MOD	flatto N	р	
		NIOD	v	NICD	IN		
а	crowd	of	peopl	e stop	ped	and	stared
DET	Ν	PREP	Ν	١	V	CONJ	V
	aotto	act		into		life	
	gotta	0		PREP	my	life	
	V	v	PRO	PREP	PRO	v	
		and	I	love	her		
		CONJ	PRO	V	PRO		

	X	here MOD		old MOD		•	
a DET	crowd N			e stop	-	and CONJ	stared V
	gotta V	-	you PRO	into PREP	my PRO	life V	
		and CONJ	I PRO	love V	her PRO		

	x z			old MOD			
a DET	crowd N			e stop	-	and CONJ	stared V
	gotta V	-	•	into PREP	-	life V	
		and CONJ	I PRO	love V	her PRO		

POS	Frequency	Probability
MOD	1.1	0.234
DET	1.1	0.234
CONJ	1.1	0.234
N	0.1	0.021
PREP	0.1	0.021
PRO	0.1	0.021
V	1.1	0.234

Remember, we're taking MAP estimates, so we add 0.1 (arbitrarily chosen) to each of the counts before normalizing to create a probability distribution. This is easy; one sentence starts with an adjective, one with a determiner, one with a verb, and one with a conjunction.

			come		flattop)	
		MOD	V	MOD	Ν		
а	crowd	of	peopl	e stop	ped	and	stared
DET	Ν	PREP	N		•	CONJ	V
	aatta	ant		inte		life	
	gotta	get	you	into	my	life	
	V	V	PRO	PREP	PRO	Ν	
		and	I	love	her		
		CONJ	PRO	V	PRO		

			come		flattop)	
		MOD	V	MOD	Ν		
а	crowd	of	peopl	e stop	ped	and	stared
DET	Ν		N		•	CONJ	V
	aatta	ant		inte		life	
	gotta	get	you	into	my	life	
	V	V	PRO	PREP	PRO	Ν	
		and	<u> </u>	love	her		
		CONJ	PRO	V	PRO		

		here MOD		old MOD	flattop N)	
a DET	crowd N		peopl N	e stop	•	and <mark>CONJ</mark>	stared V
	gotta V	0	you PRO		my PRO	life N	
		and CONJ	I PRO	love V	her PRO		

- We can ignore the words; just look at the parts of speech. Let's compute one row, the row for verbs.
- We see the following transitions: V \rightarrow MOD, V \rightarrow CONJ, V \rightarrow V, V \rightarrow PRO, and V \rightarrow PRO

POS	Frequency	Probability
MOD	1.1	0.193
DET	0.1	0.018
CONJ	1.1	0.193
Ν	0.1	0.018
PREP	0.1	0.018
PRO	2.1	0.368
V	1.1	0.193

And do the same for each part of speech ...

		here	come	old	flattop)	
		MOD	V	MOD	Ν		
а	crowd	of	peopl	e stop	ped	and	stared
DET	Ν	PREP	Ν	١	V	CONJ	V
	gotta	get	you	into	my	life	
	V	V	PRO	PREP	PRO	Ν	
		and	I	love	her		
		CONJ	PRO	V	PRO		

		here MOD	come V	old MOD	flattop N)	
a DET	crowd N		• •	e <mark>stop</mark> \		and CONJ	stared V
	gotta V		you PRO	into PREP	my PRO	life N	
		and CONJ	I PRO	love V	her PRO		

Let S IUUK at V	0100				
Word	а	and	come	crowd	flattop
Frequency	0.1	0.1	1.1	0.1	0.1
Probability	0.0125	0.0125	0.1375	0.0125	0.0125
Word	get	gotta	her	here	i
Frequency	1.1	1.1	0.1	0.1	0.1
Probability	0.1375	0.1375	0.0125	0.0125	0.0125
Word	into	it	life	love	my
Word Frequency	into 0.1	it 0.1	life 0.1	love 1.1	my 0.1
Frequency	0.1	0.1	0.1	1.1	0.1
Frequency Probability	0.1 0.0125	0.1 0.0125	0.1 0.0125	1.1 0.1375	0.1 0.0125
Frequency Probability Word	0.1 0.0125 of	0.1 0.0125 old	0.1 0.0125 people	1.1 0.1375 stared	0.1 0.0125 stopped

Let's look at verbs ...