

Clustering

Introduction to Data Science Jordan Boyd-Graber and Michael Paul SLIDES ADAPTED FROM LAUREN HANNAH

Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah

Introduction to Data Science

Roadmap

- Classification: machines labeling data for us
- Previously: logistic regression
- This time: SVMs
 - o (another) example of linear classifier
 - State-of-the-art classification
 - Good theoretical properties

Thinking Geometrically

- Suppose you have two classes: vacations and sports
- Suppose you have four documents

• What does this look like in vector space?

Put the documents in vector space

Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 10,000s of dimensions and more
- How can we do classification in this space?

Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Introduction to Data Science

Introduction to Data Science

Should the document * be assigned to China, UK or Kenya?

Find separators between the classes

Find separators between the classes

Based on these separators: ★ should be assigned to China

How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
 - Classification decision: $\sum_i \beta_i x_i > \beta_0$? (β_0 is our bias)
 - \circ ... where β_0 (the threshold) is a parameter.
- We call this the separator or decision boundary.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are linearly separable.

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
 - Classification decision: $\sum_i \beta_i x_i > \beta_0$? (β_0 is our bias)
 - \circ ... where β_0 (the threshold) is a parameter.
- We call this the separator or decision boundary.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, linear SVM
- Assumption: The classes are linearly separable.
- Before, we just talked about equations. What's the geometric intuition?

• A linear classifier in 1D is a point x described by the equation $\beta_1 x_1 = \beta_0$

- A linear classifier in 1D is a point x described by the equation $\beta_1 x_1 = \beta_0$
- $x = \beta_0/\beta_1$

- A linear classifier in 1D is a point x described by the equation $\beta_1 x_1 = \beta_0$
- $x = \beta_0/\beta_1$
- Points (x_1) with $\beta_1 x_1 \ge \beta_0$ are in the class c.

- A linear classifier in 1D is a point x described by the equation $\beta_1 x_1 = \beta_0$
- $x = \beta_0/\beta_1$
- Points (x_1) with $\beta_1 x_1 \ge \beta_0$ are in the class c.
- Points (x_1) with $\beta_1 x_1 < \beta_0$ are in the complement class \overline{c} .

• A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier
- Points $(x_1 \ x_2)$ with $\beta_1 x_1 + \beta_2 x_2 \ge \beta_0$ are in the class c.

- A linear classifier in 2D is a line described by the equation $\beta_1 x_1 + \beta_2 x_2 = \beta_0$
- Example for a 2D linear classifier
- Points $(x_1 \ x_2)$ with $\beta_1 x_1 + \beta_2 x_2 \ge \beta_0$ are in the class c.
- Points $(x_1 \ x_2)$ with $\beta_1 x_1 + \beta_2 x_2 < \beta_0$ are in the complement class \overline{c} .

 A linear classifier in 3D is a plane described by the equation

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$$

 A linear classifier in 3D is a plane described by the equation

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$$

Example for a 3D linear classifier

 A linear classifier in 3D is a plane described by the equation

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$$

- Example for a 3D linear classifier
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge \beta_0$ are in the class c.

- A linear classifier in 3D is a plane described by the equation $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$
- Example for a 3D linear
- Example for a 3D linear classifier
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge \beta_0$ are in the class c.
- Points $(x_1 \ x_2 \ x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 < \beta_0$ are in the complement class \overline{c} .