

Clustering

Introduction to Data Science University of Colorado Boulder SLIDES ADAPTED FROM LAUREN HANNAH K-means associates data with cluster centers.

What if we actually modeled the data?

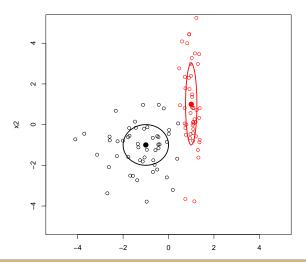
- real-valued data
- observation \mathbf{x}_i in cluster c_i
- have K clusters
- model each cluster with a Gaussian distribution

$$\mathbf{x}_i | \mathbf{c}_i = \mathbf{k} \sim N(\mu_k, \Sigma_k)$$

• μ_k is mean vector, Σ_k is covariance matrix

Mixture Models

Gaussian mixture model (K = 2):



Why mixture models?

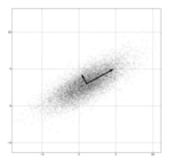
- more flexible: can account for clusters with different shapes
- have data model (will be useful for choosing K)
- less sensitive to data scaling

Multivariate Gaussian

Multivariate Gaussian distribution for $\mathbf{x} \in \mathbf{R}^d$:

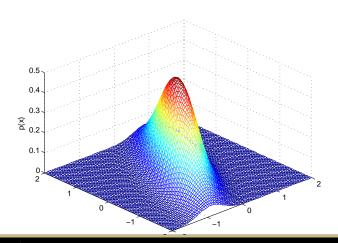
$$p(\mathbf{x}|\mu,\Sigma) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T}\Sigma^{-1}(\mathbf{x}-\mu)}$$

- µ is vector of means
- Σ is covariance matrix

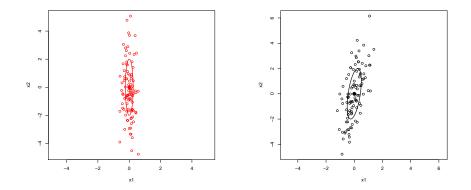


Multivariate Gaussian

pdf when
$$\mu = [0, 0]$$
 and $\Sigma = \begin{bmatrix} 0.9 & 0.4 \\ 0.4 & 0.3 \end{bmatrix}$:



Multivariate Gaussian



Mixture model:

- observation x_i in cluster c_i with K clusters
- model each cluster with a Gaussian distribution

$$\mathbf{x}_i | c_i = k \sim N(\mu_k, \Sigma_k)$$

How do we find c_1, \ldots, c_n (clusters) and $(\mu_1, \Sigma_1), \ldots, (\mu_K, \Sigma_K)$ (cluster centers)?

First, let's simplify the model:

· covariance matrices have only diagonal elements,

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \sigma_K^2 \end{bmatrix}$$

• set
$$\sigma_1^2 = \cdots = \sigma_K^2$$
, suppose known

Next, use a method similar to K-means:

- start with random cluster centers
- associate observations to clusters by (log-)likelihood,

$$\ell(\mathbf{x}_{i} | c_{i} = k) = -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log\left(\prod_{j=1}^{d} \sigma_{k,j}^{2}\right) - \frac{1}{2} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^{2} / \sigma_{k,j}^{2}$$
$$\propto -d \log(\sigma_{k}) - \frac{1}{2\sigma_{k}^{2}} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^{2}$$
$$\propto -\sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^{2}$$

• refit centers μ_1, \ldots, μ_K given clusters by

$$\mu_{k,j} = \frac{1}{n_k} \sum_{c_i=k} x_{i,j}$$

recluster observations...

clustering with K-means

minimize distance

$$d(\mathbf{x}_{i}, \mu_{k}) = \sqrt{\sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^{2}}$$

clustering with GMM maximize likelihood

$$\ell(\mathbf{x}_i | c_i = k) \propto -\sum_{j=1}^{a} (x_{i,j} - \mu_{k,j})^2$$

update means with K-means

use average

$$\mu_{k,j} = \frac{1}{n_k} \sum_{c_i = k} x_{i,j}$$

update means with GMM use average

$$\mu_{k,j} = \frac{1}{n_k} \sum_{c_i=k} x_{i,j}$$

OK, now what if

$$\Sigma = \left[egin{array}{ccccc} \sigma_1^2 & 0 & \dots & 0 \ 0 & \sigma_2^2 & \dots & 0 \ \dots & \dots & \dots & 0 \ 0 & 0 & 0 & \sigma_K^2 \end{array}
ight]$$

and $\sigma_1^2, \ldots, \sigma_K^2$ can take different values?

- use same algorithm
- update μ_k and σ_k^2 with maximum likelihood estimator,

$$\mu_{k,j} = \frac{1}{n_k} \sum_{c_i = k} x_{i,j}$$

$$\sigma_{k,j}^2 = \frac{1}{n_k} \sum_{c_i = k} (x_{i,j} - \mu_{k,j})^2$$

Data:

<i>x</i> ₁	<i>x</i> ₂	۰
-3.7	-0.4	ю —
0.4	0.1	4 -
0.4	-1.7	ю —
-0.4	-1.0	o
-1.3	-1.7	- ~ ×
1.0	3.3	
1.2	5.2	° – °
1.3	0.3	° _ °
1.1	-0.8	· · · · · ·
0.5	2.8	
		x1

- pick centers and variances, $\mu_1 = [-1, -1]$, $\sigma_1^2 = [1, 1]$, $\mu_1 = [1, 1]$, $\sigma_1^2 = [1, 1]$
- compute (proportional) log likelihoods,

$$\ell(\mathbf{x}_{i} | c_{i} = k) = -\sum_{j=1}^{d} \log(\sigma_{j}) - \frac{1}{2} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^{2} / \sigma_{k,j}^{2}$$

<i>x</i> ₁	<i>x</i> ₂	<i>k</i> = 1	k = 2
-3.7	-0.4	-3.8	-12.1
0.4	0.1	-1.6	-0.6
0.4	-1.7	-1.2	-3.8
-0.4	-1.0	-0.2	-3.0
-1.3	-1.7	-0.3	-6.3
1.0	3.3	-11.2	-2.6
1.2	5.2	-22.0	-9.0
1.3	0.3	-3.6	-0.3
1.1	-0.8	-2.2	-1.6
0.5	2.8	- 8.2	-1.7

fit new means and variances:

$$\mu_1 = [-1.3, -1.2]$$

$$\sigma_1^2 = [3.1, 0.4]$$

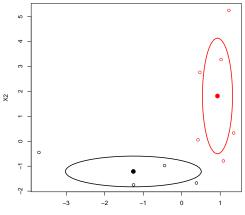
$$\mu_2 = [0.9, 1.8]$$

$$\sigma_2^2 = [0.2, 5.4]$$

compute new distances...

<i>x</i> ₁	<i>x</i> ₂	<i>k</i> = 1	k = 2
-3.7	-0.4	-1.8	-70.8
0.4	0.1	-2.7	-1.0
0.4	-1.7	-0.8	-2.0
-0.4	-1.0	-0.3	-6.8
-1.3	-1.7	-0.5	-16.6
1.0	3.3	-27.4	-0.1
1.2	5.2	-55.9	-1.3
1.3	0.3	-4.3	-0.7
1.1	-0.8	-1.2	-0.6
0.5	2.8	-21.3	-0.7

No change, so clusters are final



k-means is fast and simple, but ...

- What if your data are discrete?
- What if each data point has more than one cluster? (digits vs. documents)
- What if you don't know the number of clusters?

- Clustering helps discover patterns
- *k*-means is a simple approach
- Gaussian mixture models more probabilistic foundation