

Clustering

Introduction to Data Science University of Colorado Boulder

SLIDES ADAPTED FROM LAUREN HANNAH

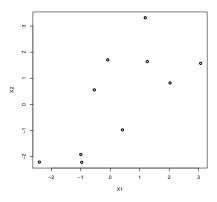
Clustering

Questions:

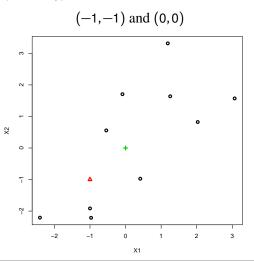
- how do we fit clusters?
- how many clusters should we use?
- how should we evaluate model fit?

How do we fit the clusters?

- simplest method: K-means
- requires: real-valued data
- idea:
 - pick K initial cluster means
 - associate all points closest to mean k with cluster k
 - use points in cluster k to update mean for that cluster
 - re-associate points closest to new mean for k with cluster k
 - use new points in cluster k to update mean for that cluster
 - 0
 - stop when no change between updates


K-Means

Animation at:

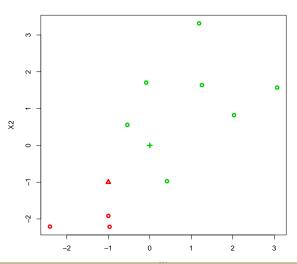

http://shabal.in/visuals/kmeans/1.html

Data:

<i>X</i> ₁	<i>X</i> ₂
0.4	-1.0
-1.0	-2.2
-2.4	-2.2
-1.0	-1.9
-0.5	0.6
-0.1	1.7
1.2	3.3
3.1	1.6
1.3	1.6
2.0	0.8

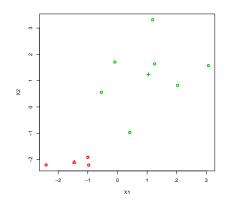
Pick K centers (randomly):

Introduction to Data Science | Boulder


Calculate distance between points and those centers:

<i>X</i> ₁	<i>X</i> ₂	(-1,-1)	(0,0)
0.4	-1.0	1.4	1.1
-1.0	-2.2	1.2	2.4
-2.4	-2.2	1.9	3.3
-1.0	-1.9	0.9	2.2
-0.5	0.6	1.6	0.8
-0.1	1.7	2.9	1.7
1.2	3.3	4.8	3.5
3.1	1.6	4.8	3.4
1.3	1.6	3.5	2.1
2.0	0.8	3.5	2.2

Choose mean with smaller distance:

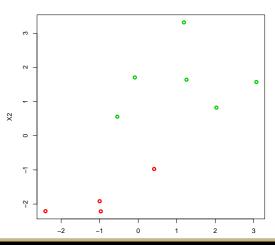

<i>X</i> ₁	<i>X</i> ₂	(-1,-1)	(0,0)
0.4	-1.0	1.4	1.1
-1.0	-2.2	1.2	2.4
-2.4	-2.2	1.9	3.3
-1.0	-1.9	0.9	2.2
-0.5	0.6	1.6	0.8
-0.1	1.7	2.9	1.7
1.2	3.3	4.8	3.5
3.1	1.6	4.8	3.4
1.3	1.6	3.5	2.1
2.0	0.8	3.5	2.2

New clusters:

Refit means for each cluster:

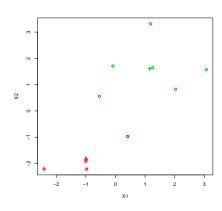
- cluster 1: (-1.0, -2.2),
 (-2.4, -2.2), (-1.0, -1.9)
- new mean: (-1.5,-2.1)
- cluster 2: (0.4,-1.0), (-0.5,0.6), (-0.1,1.7), (1.2,3.3), (3.1,1.6), (1.3,1.6), (2.0,0.8)
- new mean: (1.0, 1.2)

Recalculate distances for each cluster:


<i>X</i> ₁	<i>X</i> ₂	(-1.5, -2.1)	(1.0, 1.2)
0.4	-1.0	2.2	2.3
-1.0	-2.2	0.5	4.0
-2.4	-2.2	1.0	4.9
-1.0	-1.9	0.5	3.8
-0.5	0.6	2.8	1.7
-0.1	1.7	4.1	1.2
1.2	3.3	6.0	2.1
3.1	1.6	5.8	2.0
1.3	1.6	4.6	0.5
2.0	0.8	4.6	1.1

Introduction to Data Science Clustering

Choose mean with smaller distance:


<i>X</i> ₁	<i>X</i> ₂	(-1.5, -2.1)	(1.0, 1.2)
0.4	-1.0	2.2	2.3
-1.0	-2.2	0.5	4.0
-2.4	-2.2	1.0	4.9
-1.0	-1.9	0.5	3.8
-0.5	0.6	2.8	1.7
-0.1	1.7	4.1	1.2
1.2	3.3	6.0	2.1
3.1	1.6	5.8	2.0
1.3	1.6	4.6	0.5
2.0	0.8	4.6	1.1

New clusters:

Refit means for each cluster:

- cluster 1: (0.4, -1.0), (-1.0, -2.2), (-2.4, -2.2),(-1.0, -1.9)
- new mean: (-1.0, -1.8)
- cluster 2: (-0.5, 0.6), (-0.1, 1.7), (1.2,3.3), (3.1,1.6), (1.3,1.6),(2.0, 0.8)
- new mean: (1.2, 1.6)

Introduction to Data Science

Recalculate distances for each cluster:

<i>X</i> ₁	<i>X</i> ₂	(-1.0, -1.8)	(1.2, 1.6)
0.4	-1.0	1.6	2.7
-1.0	-2.2	0.4	4.4
-2.4	-2.2	1.5	5.2
-1.0	-1.9	0.1	4.1
-0.5	0.6	2.4	2.0
-0.1	1.7	3.6	1.2
1.2	3.3	5.6	1.7
3.1	1.6	5.3	1.9
1.3	1.6	4.1	0.1
2.0	0.8	4.0	1.2

Introduction to Data Science Clustering

Select smallest distance and compare these clusters with previous:

Table: New Clusters

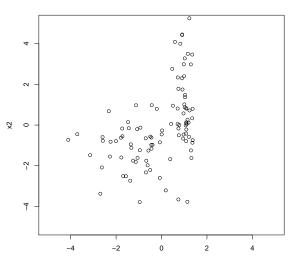
<i>X</i> ₁	<i>X</i> ₂	(-1.0, -1.8)	(1.2, 1.6)
0.4	-1.0	1.6	2.7
-1.0	-2.2	0.4	4.4
-2.4	-2.2	1.5	5.2
-1.0	-1.9	0.1	4.1
-0.5	0.6	2.4	2.0
-0.1	1.7	3.6	1.2
1.2	3.3	5.6	1.7
3.1	1.6	5.3	1.9
1.3	1.6	4.1	0.1
2.0	0.8	4.0	1.2

Table: Old Clusters

(-1.5, -2.1)	(1.0, 1.2)
2.2	2.3
0.5	4.0
1.0	4.9
0.5	3.8
2.8	1.7
4.1	1.2
6.0	2.1
5.8	2.0
4.6	0.5
4.6	1.1

K-means can be used for *image* segmentation

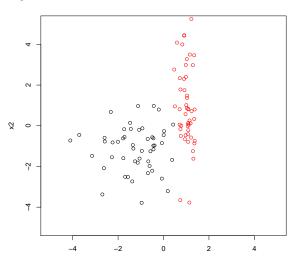
- partition image into multiple segments
- find boundaries of objects
- make art



17 of 20

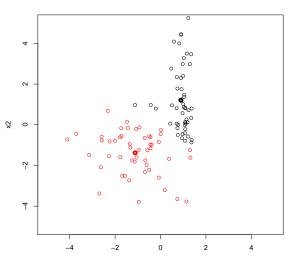
K-Means Clustering

What if our data look like this?



Introduction to Data Science | Boulder Clustering

18 of 20


K-Means Clustering

True clustering:

K-Means Clustering

K-means clustering (K = 2):

Introduction to Data Science | Boulder Clustering

20 of 20