Hypothesis Testing I: χ^{2} for collocations

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
остоber 4, 2016

Distributional Independence

- If x and y are independent, $P(x, y)=P(x) P(y)$.
- Can we test of two distributions are independent?
- This also is a χ^{2} test

Example: Collocations

- Selectional preferences: "strong tea", not "powerful tea"
- Phrases: "intents and purposes", "helter skelter"
- Some words just go together more than others
- I.e., they're not independent

Can't use frequency

80871 of the
58841 in the
26430 to the
21842 on the
21839 for the
Most frequent bigrams are just the
most frequent words. (Independent 18568 and the
distribution.)
16121 that the
15630 at the
15494 to be
13899 in a
13689 of a
13361 by the

Contingency tables

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
	(new companies)	(e.g., old companies)
$w_{2} \neq$ companies	15820	14287181
	(e.g., new machines)	(e.g., old machines)

Contingency tables: degrees of freedom

- Given row and column totals, one cell can fill in the rest (as you did in first quiz)
- In general, for a contingency table with r rows and c columns, $(r-1)(c-1)$ degrees of freedom

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Observed

	$w_{1}=$ new	$w_{1} \neq$ new	
$w_{2}=$ companies	8	4667	4675
$w_{2} \neq$ companies	15820	14287181	14303001
	15828	14291848	14307676

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	$\frac{15828}{14307676} \frac{4675}{14307676} \cdot 14307676=5.17$	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181} \tag{2}
\end{align*}
$$

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181} \tag{2}
\end{align*}
$$

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181} \tag{2}
\end{align*}
$$

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181} \tag{2}
\end{align*}
$$

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181} \tag{2}
\end{align*}
$$

Observed

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	8	4667
$w_{2} \neq$ companies	15820	14287181

Expected

	$w_{1}=$ new	$w_{1} \neq$ new
$w_{2}=$ companies	5.17	1669.83
$w_{2} \neq$ companies	15822.83	14287178.17

$$
\begin{align*}
\chi^{2}= & \frac{(8-5.17)^{2}}{5.17}+\frac{(4667-1669.83)^{2}}{4667}+\frac{(15820-15822.83)^{2}}{15820} \tag{1}\\
& +\frac{(14287181-14287178.17)^{2}}{14287181}=1.55 \tag{2}
\end{align*}
$$

Can we reject the null?

