Hypothesis Testing I: χ^{2} distribution

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
OCTOBER 4, 2016

Goodness of Fit

Suppose we see a die rolled 36 times with the following totals.

1	2	3	4	5	6
8	5	9	2	7	5

- H_{0} : fair die
- How far does it deviate from uniform distribution?

Goodness of Fit

Suppose we see a die rolled 36 times with the following totals.

1	2	3	4	5	6
8	5	9	2	7	5

- H_{0} : fair die
- How far does it deviate from uniform distribution?
- χ^{2} distribution

Chi-Square Definition

Let $Z_{1}, \ldots Z_{n}$ be independent random variables distributed $N(0,1)$. The χ^{2} distribution with n degrees of freedom can be defined by

$$
\begin{equation*}
\chi_{n}^{2} \equiv Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2} \tag{1}
\end{equation*}
$$

Chi-Square Definition

Chi-Square Distributions

PDF

$\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp \{-x / 2\}$

CDF

$\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \gamma\left(\frac{n}{2}, \frac{x}{2}\right)$

- $\gamma(s, x) \equiv \int_{0}^{x} t^{s-1} \exp \{-t\} d t$
- $\Gamma(x) \equiv \int_{0}^{\infty} t^{x-1} \exp \{-t\} d t, \Gamma(n)=(n-1)$!

Goodness of Fit

	1	2	3	4	5	6
Observed	8	5	9	2	7	5
Expected	6	6	6	6	6	6

- If this were a fair die, all observed counts would be close to expected
- We can summarize this with a test statistic

$$
\begin{equation*}
\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \tag{2}
\end{equation*}
$$

Goodness of Fit

	1	2	3	4	5	6
Observed	8	5	9	2	7	5
Expected	6	6	6	6	6	6

- If this were a fair die, all observed counts would be close to expected
- We can summarize this with a test statistic

$$
\begin{equation*}
\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \tag{2}
\end{equation*}
$$

- In our example, 5.33
- Approximately distributed as χ^{2} with $k-1$ degrees of freedom

Test Statistic and p-value

- Expected value of χ^{2} with $\mathrm{df}=5$ is 5
- 5.33 is not that far away
- 0.38 probability of rejecting the null

Degrees of Freedom

- We condition on the number of observations (36)
- So after filling in the cells for five observations, one is known
- So total of $k-1$ degrees of freedom

Degrees of Freedom

- We condition on the number of observations (36)
- So after filling in the cells for five observations, one is known
- So total of $k-1$ degrees of freedom
- Important because it specifies which χ^{2} distribution to use

