

Hypothesis Testing I: χ^2 distribution

Introduction to Data Science Algorithms Jordan Boyd-Graber and Michael Paul OCTOBER 4, 2016 Suppose we see a die rolled 36 times with the following totals.

1	2	3	4	5	6
8	5	9	2	7	5

- *H*₀: fair die
- How far does it deviate from uniform distribution?

Suppose we see a die rolled 36 times with the following totals.

1	2	3	4	5	6
8	5	9	2	7	5

- H₀: fair die
- How far does it deviate from uniform distribution?
- χ^2 distribution

Let Z_1, \ldots, Z_n be independent random variables distributed N(0, 1). The χ^2 distribution with *n* degrees of freedom can be defined by

$$\chi_n^2 \equiv Z_1^2 + Z_2^2 + \dots + Z_n^2 \tag{1}$$

Chi-Square Definition

Chi-Square Distributions

PDF

$$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}\exp\{-x/2\}$$
CDF

$$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}\gamma(\frac{n}{2},\frac{x}{2})$$

•
$$\gamma(s, x) \equiv \int_0^x t^{s-1} \exp\{-t\} dt$$

• $\Gamma(x) \equiv \int_0^\infty t^{x-1} \exp\{-t\} dt, \Gamma(n) = (n-1)!$

	1	2	3	4	5	6
Observed	8	5	9	2	7	5
Expected	6	6	6	6	6	6

- If this were a fair die, all observed counts would be close to expected
- We can summarize this with a test statistic

$$\sum \frac{(O_i - E_i)^2}{E_i} \tag{2}$$

	1	2	3	4	5	6
Observed	8	5	9	2	7	5
Expected	6	6	6	6	6	6

- If this were a fair die, all observed counts would be close to expected
- We can summarize this with a test statistic

$$\sum \frac{(O_i - E_i)^2}{E_i} \tag{2}$$

- In our example, 5.33
- Approximately distributed as χ^2 with k-1 degrees of freedom

Test Statistic and *p*-value

- Expected value of χ² with df=5 is 5
- 5.33 is not that far away
- 0.38 probability of rejecting the null

- We condition on the number of observations (36)
- So after filling in the cells for five observations, one is known
- So total of k-1 degrees of freedom

- We condition on the number of observations (36)
- So after filling in the cells for five observations, one is known
- So total of k-1 degrees of freedom
- Important because it specifies which χ^2 distribution to use