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Discrete Distribution: Multinomial

• Recall the density function (N is total number of observations, xi is the
number for each cell, θi probability of cell)

p(~x | ~θ ) =
N!
∏

i xi !

∏

θ xi
i (1)

• Taking the log makes math easier, doesn’t change answer (monotonic)

• If we observe x1 . . .xN , then log likelihood is

`( ~θ )≡ logn!−
∑

i

logxi !+
∑

i

xi logθi (2)
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MLE of Multinomial θ

`( ~θ ) = logN!−
∑

i

logxi !+
∑

i

xi logθi +λ

�

1−
∑

i

θi

�

(3)

(4)

Introduction to Data Science Algorithms | Boyd-Graber and Paul Maximum Likelihood Estimation | 3 of 1



MLE of Multinomial θ

`( ~θ ) = logN!−
∑

i

logxi !+
∑

i

xi logθi +λ

�

1−
∑

i

θi

�

(3)

(4)

Where did this come from? Constraint that ~θ must be a distribution.
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�
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• ∂ `
∂ θi

= xi
θi
−λ

• ∂ `
∂ λ = 1−
∑

i θi
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MLE of Multinomial θ

• We have system of equations

θ1 =
x1

λ
(5)

...
... (6)

θK =
xK

λ
(7)

∑

i

θi =1 (8)

• So let’s substitute the first K equations into the last:
∑

i

xi

λ
= 1 (9)

• So λ=
∑

i xi =N, and θi =
xi
N
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But why are we adding one?

• But you told us to add one while estimating multinomials!

• Difference between MLE and MAP

• mle assumes only the data distribution

• map assumes a distribution over parameters too (technically for
Laplace, Dirichlet with αi = 1)

• Recall that we showed Dirichlet parameter can be viewed as
Pseudocounts
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