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Combining Discrete and Continuous Distributions

• We can chain together two distributions

• E.g., imagine your multinomial distribution came from a Dirichlet

• Often called “Bayesian Data Analysis”

• This why explain why “add one” Laplace smoothing isn’t crazy
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Why Bayesian

• Imagine you have vector of counts ~n that come from multinomial ~θ . This
multinomial comes from a Dirichlet with parameter ~α. (Chain rule)

p(~n) = p(~n |θ )p( ~θ | ~α) (1)

• Now let’s assume that you see some counts ~n. You want to know what
the multinomial distribution parameter looks like.

p( ~θ |~n, ~α) (2)
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Conjugacy

• If ~θ ∼Dir(()α), ~w ∼Mult(()θ ), and nk = |{wi :wi = k}| then

p(θ |α, ~w)∝ p(~w |θ )p(θ |α) (3)

∝
∏

k

θ nk
∏

k

θ αk−1 (4)

∝
∏

k

θ αk+nk−1 (5)

• Conjugacy: this posterior has the same form as the prior

• In fact, it looks like you’re just adding counts!
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Why add one?

• The count that we add is equivalent to the Dirichlet parameter

• What does this mean in the case of Dirichlet distribution?

f (θ ) =
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• Uniform distribution! Doesn’t matter what x is.
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Next time

• Drawing from and plotting various distributions

• Be sure to bring laptops
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