

## Probability Distributions: Continuous

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 29, 2016

## Administrivia

- HW1 Grading Underway
- Shockingly similar submissions
- As an exercise, at some point we'll compute the probability
- All code must come from your fingers

- HW2 released
- Python review


## Continuous random variables

- Today we will look at continuous random variables:
- Real numbers: $\mathbb{R} ;(-\infty, \infty)$
- Positive real numbers: $\mathbb{R}^{+} ;(0, \infty)$
- Real numbers between -1 and 1 (inclusive): $[-1,1]$
- The sample space of continuous random variables is uncountably infinite.



## Continuous distributions

- Last time: a discrete distribution assigns a probability to every possible outcome in the sample space
- How do we define a continuous distribution?
- Suppose our sample space is all real numbers, $\mathbb{R}$.
- What is the probability of $P(X=20.1626338)$ ?
- What is the probability of $P(X=-1.5)$ ?


## Continuous distributions

- Last time: a discrete distribution assigns a probability to every possible outcome in the sample space
- How do we define a continuous distribution?
- Suppose our sample space is all real numbers, $\mathbb{R}$.
- What is the probability of $P(X=20.1626338)$ ?
- What is the probability of $P(X=-1.5)$ ?
- The probability of any continuous event is always 0 .
- Huh?
- There are infinitely many possible values a continuous variable could take. There is zero chance of picking any one exact value.
- We need a slightly different definition of probability for continuous variables.


## Probability density

- A probability density function (PDF, or simply density) is the continuous version of probability mass functions for discrete distributions.
- The density at a point $x$ is denoted $f(x)$.
- Density behaves like probability:
- $f(x) \geq 0$, for all $x$
- $\int_{x} f(x)=1$
- Even though $P(X=1.5)=0$, density allows us to ask other questions:
- Intervals: $P(1.4999<X<1.5001)$
- Relative likelihood: is 1.5 more likely than 0.8 ?


## Probability of intervals

- While the probability for a specific value is 0 under a continuous distribution, we can still measure the probability that a value falls within an interval.
- $P(X \geq a)=\int_{x=a}^{\infty} f(x)$
- $P(X \leq a)=\int_{x=-\infty}^{a} f(x)$
- $P(a \leq X \leq b)=\int_{x=a}^{b} f(x)$
- This is analogous to the disjunction rule for discrete distributions.
- For example if $X$ is a die roll, then

$$
P(X \geq 3)=P(X=3)+P(X=4)+P(X=5)+P(X=6)
$$

- An integral is similar to a sum


## Likelihood

- The likelihood function refers to the PMF (discrete) or PDF (continuous).
- For discrete distributions, the likelihood of $x$ is $P(X=x)$.
- For continuous distributions, the likelihood of $x$ is the density $f(x)$.
- We will often refer to likelihood rather than probability/mass/density so that the term applies to either scenario.

