Probability Distributions: Discrete

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 27, 2016

Poisson distribution

- We showed that the Bernoulli/binomial/categorical/multinomial are all related to each other
- Lastly, we will show something a little different
- The Poisson distribution gives the probability that an event will occur a certain number of times within a time interval
- Examples:
- The number of goals in a soccer match
- The amount of mail received in a day
- The number of times a river will flood in a decade

Poisson distribution

- Let the random variable X refer to the count of the number of events over whatever interval we are modeling.
- X can be any positive integer or zero: $\{0,1,2, \ldots\}$
- The probability mass function for the Poisson distribution is:

$$
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

- The Poisson distribution has one parameter λ, which is the average number of events in an interval.
- $\mathbb{E}[X]=\lambda$

Poisson distribution

- Example: Poisson is good model of World Cup match having a certain number of goals
- A World Cup match has an average of 2.5 goals scored: $\lambda=2.5$
- $\circ P(X=0)=\frac{2.5^{0} e^{-2.5}}{0!}=\frac{e^{-2.5}}{1}=0.082$
- $P(X=1)=\frac{2.5^{1} e^{-2.5}}{1!}=\frac{2.5 e^{-2.5}}{1}=0.205$
- $P(X=2)=\frac{2.5^{2} e^{-2.5}}{2!}=\frac{6.25 e^{-2.5}}{2}=0.257$
- $P(X=3)=\frac{2.5^{3} e^{-2.5}}{3!}=\frac{15.625 e^{-2.5}}{6}=0.213$
- $P(X=4)=\frac{2.5^{4} e^{-2.5}}{4!}=\frac{39.0625 e^{-2.5}}{24}=0.133$
- $P(X=10)=\frac{2.5^{10} e^{-2.5}}{10!}=\frac{9536.7432 e^{-2.5}}{3628800}=0.00022$

Wrap up

- Next time: practice with discrete distributions
- Next week: continuous distributions
- Homework 2
- Building language model for Republican and Democratic presidents
- Building distributions for Republican and Democractic states' districts

