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Categorical distribution

• Recall: the Bernoulli distribution is a distribution over two values
(success or failure)

• categorical distribution generalizes Bernoulli distribution over any
number of values

◦ Rolling a die
◦ Selecting a card from a deck

• AKA discrete distribution.

◦ Most general type of discrete distribution
◦ specify all (but one) of the probabilities in the distribution
◦ rather than the probabilities being determined by the probability

mass function.
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Categorical distribution

• If the categorical distribution is over K possible outcomes, then the
distribution has K parameters.

• We will denote the parameters with a K -dimensional vector ~θ .

• The probability mass function can be written as:

f (x) =
K
∏

k=1

θ
[x=k]
k

where the expression [x = k ] evaluates to 1 if the statement is true and
0 otherwise.

◦ All this really says is that the probability of outcome x is equal to θx .

• The number of free parameters is K −1, since if you know K −1 of the
parameters, the K th parameter is constrained to sum to 1.
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Categorical distribution

• Example: the roll of a (unweighted) die

P(X = 1) = 1
6

P(X = 2) = 1
6

P(X = 3) = 1
6

P(X = 4) = 1
6

P(X = 5) = 1
6

P(X = 6) = 1
6

• If all outcomes have equal probability, this is called the uniform
distribution.

• General notation: P(X = x) = θx
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Sampling from a categorical distribution

• How to randomly select a value distributed according to a categorical
distribution?

• The idea is similar to randomly selected a Bernoulli-distributed value.

• Algorithm:

1 Randomly generate a number between 0 and 1
r = random(0, 1)

2 For k = 1, . . . ,K :

• Return smallest r s.t. r <
∑k

i=1θk
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Sampling from a categorical distribution

• Example: simulating the roll of a die

P(X = 1) = θ1 = 0.166667

P(X = 2) = θ2 = 0.166667

P(X = 3) = θ3 = 0.166667

P(X = 4) = θ4 = 0.166667

P(X = 5) = θ5 = 0.166667

P(X = 6) = θ6 = 0.166667

Random number in (0,1):
r = 0.452383

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?

• Return X = 3
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Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?

r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?

r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?

r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?

r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?

r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8



Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome

Introduction to Data Science Algorithms | Boyd-Graber and Paul Probability Distributions: Discrete | 8 of 8


