Probability Distributions: Discrete

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 27, 2016

Binomial distribution

- Bernoulli: distribution over two values (success or failure) from a single event
- binomial: number of successes from multiple Bernoulli events
- Examples:
- The number of times "heads" comes up after flipping a coin 10 times
- The number of defective TVs in a line of 10,000 TVs
- Important: each Bernoulli event is assumed to be independent
- Notation: let X be a random variable that describes the number of successes out of N trials.
- The possible values of X are integers from 0 to $N:\{0,1,2, \ldots, N\}$

Binomial distribution

- Suppose we flip a coin 3 times. There are 8 possible outcomes:

$$
\begin{aligned}
& P(H H H)=P(H) P(H) P(H)=0.125 \\
& P(H H T)=P(H) P(H) P(T)=0.125 \\
& P(H T H)=P(H) P(T) P(H)=0.125 \\
& P(H T T)=P(H) P(T) P(T)=0.125 \\
& P(T H H)=P(T) P(H) P(H)=0.125 \\
& P(T H T)=P(T) P(H) P(T)=0.125 \\
& P(T T H)=P(T) P(T) P(H)=0.125 \\
& P(T T T)=P(T) P(T) P(T)=0.125
\end{aligned}
$$

- What is the probability of landing heads x times during these 3 flips?

Binomial distribution

- What is the probability of landing heads x times during these 3 flips?
- 0 times:
- $P(T T T)=0.125$
- 1 time:
- $P(H T T)+P(T H T)+P(T T H)=0.375$
- 2 times:
- $P(H H T)+P(H T H)+P(T H H)=0.375$
- 3 times:
- $P(H H H)=0.125$

Binomial distribution

- The probability mass function for the binomial distribution is:

$$
f(x)=\underbrace{\binom{N}{x}}_{\text {"N choose } x \text { " }} \theta^{x}(1-\theta)^{N-x}
$$

- Like the Bernoulli, the binomial parameter θ is the probability of success from one event.
- Binomial has second parameter N : number of trials.
- The PMF important: difficult to figure out the entire distribution by hand.

Aside: Binomial coefficients

- The expression $\binom{n}{k}$ is called a binomial coefficient.
- Also called a combination in combinatorics.
- $\binom{n}{k}$ is the number of ways to choose k elements from a set of n elements.
- For example, the number of ways to choose 2 heads from 3 coin flips: HHT, HTH, THH
$\binom{3}{2}=3$
- Formula:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Pascal's triangle depicts the values of $\binom{n}{k}$.

Bernoulli vs Binomial

- A Bernoulli distribution is a special case of the binomial distribution when $N=1$.
- For this reason, sometimes the term binomial is used to refer to a Bernoulli random variable.

Example

- Probability that a coin lands heads at least once during 3 flips?

Example

- Probability that a coin lands heads at least once during 3 flips?

$$
P(X \geq 1)
$$

Example

- Probability that a coin lands heads at least once during 3 flips?

$$
\begin{aligned}
P(X \geq 1)= & P(X=1)+P(X=2)+P(X=3) \\
& =0.375+0.375+0.125=0.875
\end{aligned}
$$

