Probability Distributions: Discrete

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 27, 2016

Administrivia

- New grader: Aditya Thyagarajan
- HW1 grading nearly done
- Will appear in Moodle (waiting for late days)

Refresher: Random variables

- Random variables take on values in a sample space.
- This week we will focus on discrete random variables:
- Coin flip: $\{H, T\}$
- Number of times a coin lands heads after N flips: $\{0,1,2, \ldots, N\}$
- Number of words in a document: Positive integers $\{1,2, \ldots\}$
- Reminder: we denote the random variable with a capital letter; denote a outcome with a lower case letter.
- E.g., X is a coin flip, x is the value (H or T) of that coin flip.

Refresher: Discrete distributions

- A discrete distribution assigns a probability to every possible outcome in the sample space
- For example, if X is a coin flip, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- Probabilities have to be greater than or equal to 0 and probabilities over the entire sample space must sum to one

$$
\sum_{x} P(X=x)=1
$$

Mathematical Conventions

n^{0}

Example for 3 :

$$
\begin{align*}
3^{2} & =9 \tag{1}\\
3^{1} & =3 \tag{2}\\
3^{-1} & =\frac{1}{3} \tag{3}
\end{align*}
$$

Mathematical Conventions

n^{0}
Example for 3 :

$$
\begin{align*}
3^{2} & =9 \tag{1}\\
3^{1} & =3 \tag{2}\\
3^{0} & =1 \tag{3}\\
3^{-1} & =\frac{1}{3} \tag{4}
\end{align*}
$$

Today: Types of discrete distributions

- There are many different types of discrete distributions, with different definitions.
- Today we'll look at the most common discrete distributions.
- And we'll introduce the concept of parameters.
- These discrete distributions (along with the continuous distributions next) are fundamental
- Regression, classification, and clustering

