Conditional Probability

Data Science: Jordan Boyd-Graber University of Maryland
SLIDES ADAPTED FROM PHILIP KOEHN

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

- Maximum likelihood (ML) estimate of the probability is:

$$
\begin{equation*}
\hat{\theta}_{i}=\frac{n_{i}}{\sum_{k} n_{k}} \tag{1}
\end{equation*}
$$

Example: 3-Gram

- Counts for trigrams and estimated word probabilities the red (total: 225)

word	c.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
\rightarrow maximum likelihood probability is $\frac{123}{225}=0.547$.

Example: 3-Gram

- Counts for trigrams and estimated word probabilities the red (total: 225)

word	c.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
\rightarrow maximum likelihood probability is $\frac{123}{225}=0.547$.
- Is this reasonable?

The problem with maximum likelihood estimates: Zeros

- If there were no occurrences of "bageling" in a history go, we'd get a zero estimate:

$$
\hat{P}(\text { "bageling" } \mid \text { go })=\frac{T_{\text {go, "bageling" }}}{\sum_{w^{\prime} \in V} T_{g o, w^{\prime}}}=0
$$

- \rightarrow We will get $P($ gold $)=0$ for any sentence that contains go bageling!
- Zero probabilities cannot be conditioned away.

Add-One Smoothing

- Equivalent to assuming a uniform prior over all possible distributions over the next word (you'll learn why later)
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
- 86,700 distinct words
- $86,700^{2}=7,516,890,000$ possible bigrams
- but only about 30,000,000 words (and bigrams) in corpus

More about this later ...

- MLE vs. MAP (Estimation)
- Bayesian interpretation: prior of distribution
- Fancier smoothing (Knesser-Ney, neural models)

That's it!

- Next time: Language model lab
- Homework 1

