Mathematical Foundations

Data Science: Jordan Boyd-Graber University of Maryland
SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Random variable

- Probability is about random variables.
- A random variable is any "probabilistic" outcome.
- Examples of variables:
- Yesterday's high temperature
- The height of someone
- Examples of random variables:
- Tomorrow's high temperature
- The height of someone chosen randomly from a population

Random variable

- Probability is about random variables.
- A random variable is any "probabilistic" outcome.
- Examples of variables:
- Yesterday's high temperature
- The height of someone
- Examples of random variables:
- Tomorrow's high temperature
- The height of someone chosen randomly from a population
- We'll see that it's sometimes useful to think of quantities that are not strictly probabilistic as random variables.
- The high temperature on 03/04/1905
- The number of times "streetlight" appears in a document

Random variable

- Random variables take on values in a sample space.
- They can be discrete or continuous:
- Coin flip: $\{H, T\}$
- Height: positive real values $(0, \infty)$
- Temperature: real values $(-\infty, \infty)$
- Number of words in a document: Positive integers $\{1,2, \ldots\}$
- We call the outcomes events.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.
- E.g., X is a coin flip, x is the value (H or T) of that coin flip.

Discrete distribution

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- And probabilities have to be greater than or equal to 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3 :

$$
P(D>3)=P(D=4)+P(D=5)+P(D=6)
$$

- The probabilities over the entire space must sum to one

Discrete distribution

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- And probabilities have to be greater than or equal to 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3 :

$$
P(D>3)=P(D=4)+P(D=5)+P(D=6)
$$

- The probabilities over the entire space must sum to one

Discrete distribution

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- And probabilities have to be greater than or equal to 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3 :

$$
P(D>3)=P(D=4)+P(D=5)+P(D=6)
$$

- The probabilities over the entire space must sum to one

$$
\sum P(X=x)=1
$$

Discrete distribution

- A discrete distribution assigns a probability to every event in the sample space
- For example, if X is a coin, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- And probabilities have to be greater than or equal to 0
- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3 :

$$
P(D>3)=P(D=4)+P(D=5)+P(D=6)
$$

- The probabilities over the entire space must sum to one

$$
\sum_{x} P(X=x)=1
$$

Events

An event is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts

Intersections and unions:

- Intersection: drawing a red and a King

$$
\begin{equation*}
P(A \cap B) \tag{1}
\end{equation*}
$$

- Union: drawing a spade or a King

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{2}
\end{equation*}
$$

Events

An event is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts Intersections and unions:
- Intersection: drawing a red and a King

$$
\begin{equation*}
P(A \cap B) \tag{1}
\end{equation*}
$$

- Union: drawing a spade or a King

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{2}
\end{equation*}
$$

Events

An event is a set of outcomes to which a probability is assigned

- drawing a black card from a deck of cards
- drawing a King of Hearts

Intersections and unions:

- Intersection: drawing a red and a King

$$
\begin{equation*}
P(A \cap B) \tag{1}
\end{equation*}
$$

- Union: drawing a spade or a King

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{2}
\end{equation*}
$$

Joint distribution

- Typically, we consider collections of random variables.
- The joint distribution is a distribution over the configuration of all the random variables in the ensemble.
- For example, imagine flipping 4 coins. The joint distribution is over the space of all possible outcomes of the four coins.

$$
\begin{aligned}
P(H H H H) & =0.0625 \\
P(H H H T) & =0.0625 \\
P(H H T H) & =0.0625
\end{aligned}
$$

- You can think of it as a single random variable with 16 values.

Visualizing a joint distribution

