
Mathematical Foundations

Data Science: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Data Science: Jordan Boyd-Graber | UMD Mathematical Foundations | 1 / 1



Random variable

� Probability is about random variables.

� A random variable is any “probabilistic” outcome.
� Examples of variables:
� Yesterday’s high temperature
� The height of someone

� Examples of random variables:
� Tomorrow’s high temperature
� The height of someone chosen randomly from a population

� We’ll see that it’s sometimes useful to think of quantities that are not
strictly probabilistic as random variables.
� The high temperature on 03/04/1905
� The number of times “streetlight” appears in a document
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Random variable

� Random variables take on values in a sample space.
� They can be discrete or continuous:
� Coin flip: {H,T }
� Height: positive real values (0,∞)
� Temperature: real values (−∞,∞)
� Number of words in a document: Positive integers {1,2, . . .}

� We call the outcomes events.
� Denote the random variable with a capital letter; denote a realization of

the random variable with a lower case letter.
� E.g., X is a coin flip, x is the value (H or T ) of that coin flip.

Data Science: Jordan Boyd-Graber | UMD Mathematical Foundations | 3 / 1



Discrete distribution

� A discrete distribution assigns a probability
to every event in the sample space

� For example, if X is a coin, then

P(X =H) = 0.5

P(X = T ) = 0.5

� And probabilities have to be greater than or equal to 0
� Probabilities of disjunctions are sums over part of the space. E.g., the

probability that a die is bigger than 3:

P(D > 3) = P(D = 4)+P(D = 5)+P(D = 6)

� The probabilities over the entire space must sum to one
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Events

An event is a set of outcomes to which a
probability is assigned

� drawing a black card from a deck of cards

� drawing a King of Hearts

Intersections and unions:

� Intersection: drawing a red and a King

P(A∩B) (1)

� Union: drawing a spade or a King

P(A∪B) = P(A)+P(B)−P(A∩B) (2)
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Joint distribution

� Typically, we consider collections of random variables.

� The joint distribution is a distribution over the configuration of all the
random variables in the ensemble.

� For example, imagine flipping 4 coins. The joint distribution is over the
space of all possible outcomes of the four coins.

P(HHHH) = 0.0625

P(HHHT ) = 0.0625

P(HHTH) = 0.0625

. . .

� You can think of it as a single random variable with 16 values.
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Visualizing a joint distribution
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